Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; : e202402406, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187432

ABSTRACT

A concise hydrosilylation of alkynes for synthesizing ß-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, ß-(E)-vinylsilanes were generated from the isomerization of ß-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitrile, amines, esters, and heterocycles.

2.
J Org Chem ; 89(17): 12583-12590, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39158102

ABSTRACT

A protocol induced by visible light for the direct insertion of α-carbonyl carbenes into the B-H bond of amine-borane adducts has been developed under conditions that are free of metal and photocatalyst. This approach provides a straightforward route to various organoboron compounds from diazo compounds and amine-borane adducts with moderate to good yields. Mechanistic investigations reveal that this photoinduced reaction proceeds through concerted carbene insertion into the B-H bond, and the photoinduced generation of free carbene from α-diazo esters may be the rate-determining step.

3.
Chem Commun (Camb) ; 57(97): 13158-13161, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34812446

ABSTRACT

A metal-free C(sp3)-H phosphorylation of saturated aza-heterocycles via the merger of organic photoredox and Brønsted acid catalyses was established under mild conditions. This protocol provided straightforward and economic access to a variety of valuable α-phosphoryl cyclic amines by using commercially available diarylphosphine oxide reagents. In addition, the D-A fluorescent molecule DCQ was used for the first time as a photocatalyst and exhibited an excellent photoredox catalytic efficiency in this transformation. A series of mechanistic experiments and DFT calculations demonstrated that this transformation underwent a sequential visible light photoredox catalytic oxidation/nucleophilic addition process.

SELECTION OF CITATIONS
SEARCH DETAIL