Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2403570, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710097

ABSTRACT

A formidable challenge to achieve the practical applications of rechargeable lithium (Li) metal batteries (RLMBs) is to suppress the uncontrollable growth of Li dendrites. One of the most effective solutions is to fabricate Li metal anodes with specific crystal plane, but still lack of a simple and high-efficient approach. Herein, a facile and controllable way for the scalable customization of polished Li metal anodes with highly preferred (110) and (200) crystallographic orientation (donating as polished Li(110) and polished Li(200), respectively) by regulating the times of accumulative roll bonding, is reported. According to the inherent characteristics of polished Li(110)/Li(200), the influence of Li atomic structure on the electrochemical performance of RLMBs is deeply elucidated by combining theoretical calculations with relative experimental proofs. In particular, a polished Li(110) crystal plane is demonstrated to induce Li+ uniform deposition, promoting the formation of flat and dense Li deposits. Impressively, the polished Li(110)||LiFePO4 full cells exhibit unprecedented cycling stability with 10 000 cycles at 10 C almost without capacity degradation, indicating the great potential application prospect of such textured Li metal. More valuably, this work provides an important reference for low-cost, continued, and large-scale production of Li metal anodes with highly preferred crystal orientation through roll-to-roll manufacturability.

2.
Article in English | MEDLINE | ID: mdl-38041638

ABSTRACT

Due to their high energy density, lithium/sodium metal batteries (LMBs/SMBs) are expected to be the next generation of energy storage systems. However, the further application of alkali metal batteries based on liquid electrolytes is limited due to increasing safety concerns. Gel polymer electrolytes (GPEs), which combine the advantages of the high ionic conductivity of liquid electrolytes and excellent mechanical properties of solid polymer electrolytes, are considered to play an irreplaceable role in the realization of high-performance alkali metal batteries. In this work, a flexible boron-containing GPE (B-GPE) with a cross-linked polymer network structure is prepared by a UV-induced process. The as-prepared B-GPE exhibits good ionic conductivity and has an extremely high ion transference number due to the electron-withdrawing effect of the boron moiety and the facile electrolyte uptake ability of the ethylene oxide chain. Furthermore, a "gentle" electrode/electrolyte contact is designed by a one-step in situ polymerization method, which can enhance ion transport within the electrode and at the electrode/electrolyte interface due to the presence of a continuous polymer phase for ion conduction. Therefore, LMBs and SMBs containing B-GPE are able to effectively inhibit the growth of dendrites while exhibiting excellent cycling stability. These comprehensive results indicate that this novel B-GPE possesses potential applications for high-performance alkali metal batteries.

3.
Nanoscale ; 13(30): 12896-12909, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34477773

ABSTRACT

MOFs with high tunability are considered ideal candidates as microwave-absorbing materials. Strict experimental conditions can ensure the repeatability and maximize the potential of such materials. In this study, cubic ZIF-67 carbides synthesized at different solution temperatures showed an adjustable average size, and then by adjusting the calcination temperature we could control the degree of graphitization, so as to explore the synergistic effect of these two aspects to achieve an in-depth understanding of the electromagnetic properties and microwave absorption properties. The results showed that sample 30-600 (with the former number referring to the synthesis temperature and the latter to the calcination temperature) showed the widest effective absorption bandwidth (5.75 GHz, 1.8 mm) and the optimal reflection loss (-56.92 dB, 2.1 mm). The best matching electromagnetic parameters were obtained under the synergistic action of a smaller particle size and appropriate degree of graphitization, so as to achieve strong attenuation characteristics under low electromagnetic wave reflection. The microwave loss mechanism of the sample mainly involved dielectric losses, such as from conductance loss, dipole polarization, and interface polarization. Starting from the experimental details, this work proposes a dual control strategy for developing microwave-absorbing materials with both simplicity and practicability, which provides a useful reference for other microwave absorbents synthesized at room temperature.

4.
Nanoscale ; 13(5): 3119-3135, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33523065

ABSTRACT

The development of lightweight and high-efficiency microwave absorption materials has attracted wide attention in the field of electromagnetic wave absorption. Herein, two kinds of petal-like Ni-based MOFs were grown on the surface of graphene nanosheets, and then pyrolyzed to obtain new microwave absorbers. The extraordinary microwave absorption performance mainly comes from: the unique petal-like porous carbon framework of MOFs, the 3D conductive network formed by the connection of GNs, the polarization process between the interfaces of multiple heterogeneous components and high impedance matching brought about by magnetic Ni nanoparticles. By adjusting the filling ratio to only 10 wt%, the optimum reflection loss of the prepared composites is up to -53.99 dB, and the effective absorption bandwidth reaches 4.39 GHz when the matching thickness is only 1.4 mm. This work provides not only a facile method for the design and fabrication of two high-efficiency microwave absorbers, but also a reference for the precise control of electromagnetic absorption properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...