Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38892496

ABSTRACT

The imbalance of gut microbiota is an important factor leading to inflammatory bowel disease (IBD). Diffusible signal factor (DSF) is a novel quorum-sensing signal that regulates bacterial growth, metabolism, pathogenicity, and host immune response. This study aimed to explore the therapeutic effect and underlying mechanisms of DSF in a zebrafish colitis model induced by sodium dextran sulfate (DSS). The results showed that intake of DSF can significantly improve intestinal symptoms in the zebrafish colitis model, including ameliorating the shortening of the intestine, reducing the increase in the goblet cell number, and restoring intestinal pathological damage. DSF inhibited the upregulation of inflammation-related genes and promoted the expression of claudin1 and occludin1 to protect the tightness of intestinal tissue. The gut microbiome analysis demonstrated that DSF treatment helped the gut microbiota of the zebrafish colitis model recover to normal at the phylum and genus levels, especially in terms of pathogenic bacteria; DSF treatment downregulated the relative abundance of Aeromonas hydrophila and Staphylococcus aureus, and it was confirmed in microbiological experiments that DSF could effectively inhibit the colonization and infection of these two pathogens in the intestine. This study suggests that DSF can alleviate colitis by inhibiting the proliferation of intestinal pathogens and inflammatory responses in the intestine. Therefore, DSF has the potential to become a dietary supplement that assists in the antibiotic and nutritional treatment of IBD.


Subject(s)
Colitis , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Quorum Sensing , Zebrafish , Animals , Gastrointestinal Microbiome/drug effects , Colitis/chemically induced , Colitis/microbiology , Colitis/drug therapy , Quorum Sensing/drug effects , Intestines/microbiology , Aeromonas hydrophila , Inflammation , Staphylococcus aureus/drug effects
2.
Biosensors (Basel) ; 14(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785686

ABSTRACT

Combinatorial drug therapy has emerged as a critically important strategy in medical research and patient treatment and involves the use of multiple drugs in concert to achieve a synergistic effect. This approach can enhance therapeutic efficacy while simultaneously mitigating adverse side effects. However, the process of identifying optimal drug combinations, including their compositions and dosages, is often a complex, costly, and time-intensive endeavor. To surmount these hurdles, we propose a novel microfluidic device capable of simultaneously generating multiple drug concentration gradients across an interlinked array of culture chambers. This innovative setup allows for the real-time monitoring of live cell responses. With minimal effort, researchers can now explore the concentration-dependent effects of single-agent and combination drug therapies. Taking neural stem cells (NSCs) as a case study, we examined the impacts of various growth factors-epithelial growth factor (EGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF)-on the differentiation of NSCs. Our findings indicate that an overdose of any single growth factor leads to an upsurge in the proportion of differentiated NSCs. Interestingly, the regulatory effects of these growth factors can be modulated by the introduction of additional growth factors, whether singly or in combination. Notably, a reduced concentration of these additional factors resulted in a decreased number of differentiated NSCs. Our results affirm that the successful application of this microfluidic device for the generation of multi-drug concentration gradients has substantial potential to revolutionize drug combination screening. This advancement promises to streamline the process and accelerate the discovery of effective therapeutic drug combinations.


Subject(s)
High-Throughput Screening Assays , Neural Stem Cells , Neural Stem Cells/drug effects , Humans , Cell Differentiation , Lab-On-A-Chip Devices , Platelet-Derived Growth Factor , Epidermal Growth Factor , Drug Evaluation, Preclinical , Drug Combinations , Fibroblast Growth Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...