Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
J Endourol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919128

ABSTRACT

PURPOSE: Retrograde intrarenal surgery is the gold-standard treatment for most kidney stones. During ureteroscopy, ureteral access sheath insertion at forces greater than 8.0 Newtons risks high-grade ureteral injury. To monitor force, our institution utilizes a unique, Bluetooth equipped device (i.e., the University of California - Irvine Force Sensor). Given the unique nature of the force sensor, we sought to develop an inexpensive and accessible force sensor based on Boyle's Law and the specific amount of force required to compress an occluded 1.0 mL syringe. MATERIALS AND METHODS: We evaluated three brands of 1.0 mL syringes. After setting the plunger at 1.0 mL, the syringe was occluded, and the syringe plunger was compressed. The syringe volume was recorded when the applied force on the plunger reached 4.0 N, 6.0 N, and 8.0 N. Multiple trials were performed to assess reliability and reproducibility. A method for applying this clinically was also developed. RESULTS: The precise force thresholds identified for a 1.0 mL Luer-Lok™ Syringe (Becton Dickinson, Franklin Lakes, NJ) were 0.30 mL for 4.00 N, 0.20 mL for 6.00 N, and 0.15 mL for 8.00 N. The 1.0 mL Tuberculin Syringe and 1.0 mL Luer Slip Syringe were less precise, but compression from 1.0 mL to 0.40 mL, 0.25 mL and 0.20 mL corresponded to force sensor readings that did not exceed 4.00 N, 6.00 N, and 8.00 N, respectively. CONCLUSIONS: Based on volume changes, 4.00 N, 6.00 N, and 8.00 N of force can be reliably and reproducibly achieved using an occluded 1.0 mL syringe.

2.
J Sci Food Agric ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829244

ABSTRACT

BACKGROUND: Bacterial fruit blotch (BFB), known as the 'cancer' of cucurbits, is a seed-borne disease of melons caused by Acidovorax citrulli. Traditional chemical treatments for BFB are ineffective and adversely affect the environment. Using dielectric barrier discharge (DBD) nanosecond-pulsed plasma technology, melon seeds were treated to promote germination and growth and to control BFB. RESULTS: Based on the evaluation parameters of seed germination, seedling growth, leaf yellowing and bacterial infection after seed plasma treatments, 9 min at 20 kV was selected as the optimal plasma discharge parameter. In this study, seedling growth was significantly improved after treating melon seeds carrying A. citrulli using this discharge parameter. The number of first true leaves measured on the eighth day was 2.3 times higher and the disease index was reduced by 60.5% compared to the control group. Attenuated total reflectance-Fourier transform infrared measurements show that plasma treatments penetrate the seed coat and denature polysaccharides and proteins in the seed kernel, affecting their growth and sterilization properties. CONCLUSION: Pre-sowing treatment of melon seeds carrying A. citrulli using nanosecond-pulsed plasma technology can effectively control seedling BFB disease and promote melon seedling growth by optimizing DBD parameters. © 2024 Society of Chemical Industry.

3.
J Oleo Sci ; 73(5): 761-772, 2024.
Article in English | MEDLINE | ID: mdl-38692898

ABSTRACT

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Subject(s)
Insecticides , Oils, Volatile , Plant Leaves , Tribolium , Animals , Insecticides/isolation & purification , Insecticides/analysis , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tribolium/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/analysis , Insect Repellents/analysis , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Temperature
4.
NPJ Genom Med ; 9(1): 32, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811629

ABSTRACT

Incontinentia pigmenti (IP) is a rare X-linked dominant neuroectodermal dysplasia that primarily affects females. The only known causative gene is IKBKG, and the most common genetic cause is the recurrent IKBKG△4-10 deletion resulting from recombination between two MER67B repeats. Detection of variants in IKBKG is challenging due to the presence of a highly homologous non-pathogenic pseudogene IKBKGP1. In this study, we successfully identified four pathogenic variants in four IP patients using a strategy based on single-tube long fragment read (stLFR) sequencing with a specialized analysis pipeline. Three frameshift variants (c.519-3_519dupCAGG, c.1167dupC, and c.700dupT) were identified and subsequently validated by Sanger sequencing. Notably, c.519-3_519dupCAGG was found in both IKBKG and IKBKGP1, whereas the other two variants were only detected in the functional gene. The IKBKG△4-10 deletion was identified and confirmed in one patient. These results demonstrate that the proposed strategy can identify potential pathogenic variants and distinguish whether they are derived from IKBKG or its pseudogene. Thus, this strategy can be an efficient genetic testing method for IKBKG. By providing a comprehensive understanding of the whole genome, it may also enable the exploration of other genes potentially associated with IP. Furthermore, the strategy may also provide insights into other diseases with detection challenges due to pseudogenes.

5.
Poult Sci ; 103(5): 103638, 2024 May.
Article in English | MEDLINE | ID: mdl-38579575

ABSTRACT

Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 µL of water or APS (250 µg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1ß, and IL-6) and IFN-ß by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.


Subject(s)
Chickens , DNA, Mitochondrial , Inflammation , Polysaccharides , Poultry Diseases , Animals , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , DNA, Mitochondrial/metabolism , Inflammation/veterinary , Inflammation/chemically induced , Poultry Diseases/prevention & control , Poultry Diseases/chemically induced , Female , Stress, Physiological/drug effects , Astragalus Plant/chemistry , Random Allocation , Heart Diseases/veterinary , Heart Diseases/prevention & control , Heart Diseases/chemically induced , Heart Diseases/etiology , Oxidative Stress/drug effects , Signal Transduction/drug effects
6.
Article in English | MEDLINE | ID: mdl-38647881

ABSTRACT

Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.

7.
Parasit Vectors ; 17(1): 195, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671515

ABSTRACT

BACKGROUND: Toxoplasma gondii and Neospora caninum are closely related protozoan parasites that are considered important causes of abortion in livestock, causing huge economic losses. Hunan Province ranks 12th in the production of beef and mutton in China. However, limited data are available on the seroprevalence, risk factors and molecular characterization of T. gondii and N. caninum in beef cattle and goats in Hunan province, China. METHODS: Sera of 985 beef cattle and 1147 goats were examined for the presence of specific antibodies against T. gondii using indirect hemagglutination test (IHAT) and anti-N. caninum IgG using competitive-inhibition enzyme-linked immunoassay assay (cELISA). Statistical analysis of possible risk factors was performed using PASW Statistics. Muscle samples of 160 beef cattle and 160 goats were examined for the presence of T. gondii DNA (B1 gene) and N. caninum DNA (Nc-5 gene) by nested PCR. The B1 gene-positive samples were genotyped at 10 genetic markers using the multilocus nested PCR-RFLP (Mn-PCR-RFLP). RESULTS: Specific IgG against T. gondii were detected in 8.3% (82/985) and 13.3% (153/1147) and against N. caninum in 2.1% (21/985) and 2.0% (23/1147) of the beef cattle and goats, respectively. Based on statistical analysis, the presence of cats, semi-intensive management mode and gender were identified as significant risk factors for T. gondii infection in beef cattle. Age was a significant risk factor for T. gondii infection in goats (P < 0.05), and age > 3 years was a significant risk factor for N. caninum infection in beef cattle (P < 0.05). PCR positivity for T. gondii was observed in three beef samples (1.9%; 3/160) and seven chevon samples (4.4%; 7/160). Genotyping of PCR positive samples identified one to be ToxoDB#10. The N. caninum DNA was observed in one beef sample (0.6%; 1/160) but was negative in all chevon samples. CONCLUSIONS: To our knowledge, this is the first large-scale serological and molecular investigation of T. gondii and N. caninum and assessment of related risk factors in beef cattle and goats in Hunan Province, China. The findings provide baseline data for executing prevention and control of these two important parasites in beef cattle and goats in China.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Goat Diseases , Goats , Neospora , Toxoplasma , Toxoplasmosis, Animal , Animals , Goats/parasitology , Neospora/genetics , Neospora/immunology , Neospora/isolation & purification , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , China/epidemiology , Cattle , Seroepidemiologic Studies , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Antibodies, Protozoan/blood , Female , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Male , Risk Factors , Immunoglobulin G/blood , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Genotype , Polymerase Chain Reaction/veterinary
8.
Urol Clin North Am ; 51(2): 239-251, 2024 May.
Article in English | MEDLINE | ID: mdl-38609196

ABSTRACT

Urethral function declines by roughly 15% per decade and profoundly contributes to the pathogenesis of urinary incontinence. Individuals with poor urethral function are more likely to fail surgical management for stress incontinence that focus on improving urethral support. The reduced number of intramuscular nerves and the morphologic changes in muscle and connective tissue collectively impact urethral function as women age. Imaging technologies like MRI and ultrasound have advanced our understanding of these changes. However, substantial knowledge gaps remain. Addressing these gaps can be crucial for developing better prevention and treatment strategies, ultimately enhancing the quality of life for aging women.


Subject(s)
Urethra , Urinary Incontinence , Humans , Female , Urethra/diagnostic imaging , Quality of Life , Vulva , Aging
9.
Parasitol Res ; 123(3): 168, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517567

ABSTRACT

Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.


Subject(s)
Cattle Diseases , Genome, Mitochondrial , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/genetics , Phylogeny , Tick Infestations/veterinary , Tick Infestations/parasitology , Cattle Diseases/parasitology
10.
Sci Total Environ ; 926: 171922, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522532

ABSTRACT

The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Arsenic/analysis , Pteris/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Plant Roots/metabolism , Soil , Glucose/metabolism
11.
World J Diabetes ; 15(1): 81-91, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38313851

ABSTRACT

BACKGROUND: In recent years, the prevalence of obesity and metabolic syndrome in type 1 diabetes (T1DM) patients has gradually increased. Insulin resistance in T1DM deserves attention. It is necessary to clarify the relationship between body composition, metabolic syndrome and insulin resistance in T1DM to guide clinical treatment and intervention. AIM: To assess body composition (BC) in T1DM patients and evaluate the relationship between BC, metabolic syndrome (MS), and insulin resistance in these indi-viduals. METHODS: A total of 101 subjects with T1DM, aged 10 years or older, and with a disease duration of over 1 year were included. Bioelectrical impedance analysis using the Tsinghua-Tongfang BC Analyzer BCA-1B was employed to measure various BC parameters. Clinical and laboratory data were collected, and insulin resistance was calculated using the estimated glucose disposal rate (eGDR). RESULTS: MS was diagnosed in 16/101 patients (15.84%), overweight in 16/101 patients (15.84%), obesity in 4/101 (3.96%), hypertension in 34/101 (33.66%%) and dyslipidemia in 16/101 patients (15.84%). Visceral fat index (VFI) and trunk fat mass were significantly and negatively correlated with eGDR (both P < 0.001). Female patients exhibited higher body fat percentage and visceral fat ratio compared to male patients. Binary logistic regression analysis revealed that significant factors for MS included eGDR [P = 0.017, odds ratio (OR) = 0.109], VFI (P = 0.030, OR = 3.529), and a family history of diabetes (P = 0.004, OR = 0.228). Significant factors for hypertension included eGDR (P < 0.001, OR = 0.488) and skeletal muscle mass (P = 0.003, OR = 1.111). Significant factors for dyslipidemia included trunk fat mass (P = 0.033, OR = 1.202) and eGDR (P = 0.037, OR = 0.708). CONCLUSION: Visceral fat was found to be a superior predictor of MS compared to conventional measures such as body mass index and waist-to-hip ratio in Chinese individuals with T1DM. BC analysis, specifically identifying visceral fat (trunk fat), may play an important role in identifying the increased risk of MS in non-obese patients with T1DM.

12.
Ecol Evol ; 14(1): e10836, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239339

ABSTRACT

The Golden apple snail, Pomacea canaliculata, is one of the world's 100 worst invasive alien species that is best known for its damage to wetland agriculture. It also acts as an intermediate host of some zoonotic parasites such as Angiostrongylus cantonensis, posing threats to human public health and safety. Despite is being an important agricultural pest, the genetic information and population expansion history of this snail remains poorly understood in China. In this study, we analyzed the genetic variation and population genetics of P. canaliculata populations in seven regions of China based on molecular markers of three mitochondrial (mt) genes. A total of 15 haplotypes were recognized based on single mt cox1, nad1, and nad4, and eight haplotypes were identified using the concatenated genes. High haplotype diversity, moderate nucleotide diversity, low gene flow, and high rates of gene differentiation among the seven P. canaliculata populations were detected. Shanghai and Yunnan populations showed higher genetic flow and very low genetic differentiation. The results of Tajima's D, Fu's F s, and mismatch distribution showed that P. canaliculata did not experience population expansion in China. Genetic distance based on haplotypes suggested that nad1 gene was more conserved than cox1 gene within P. canaliculata. The phylogenetic analyses showed there may be two geographical lineages in the Chinese mainland. The present study may provide a new genetic marker to analyze P. canaliculata, and results support more evidence for studying the genetic distribution of P. canaliculata in China and contribute to a deeper understanding of its population genetics and evolutionary biology.

13.
J Cosmet Dermatol ; 23(1): 271-283, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37464738

ABSTRACT

BACKGROUND: Adipose stem cell-derived exosomes (ADSC-EXO) and botulinum toxin type A (BTX-A) individually showed a therapeutic effect on skin wound repair. AIMS: This study investigated their synergistic effect on promoting skin wound healing in vitro and in vivo and the underlying molecular events. METHODS: ADSCs were isolated from Sprague-Dawley (SD) rats to obtain ADSC-EXO by ultrafiltration and ultracentrifugation and were confirmed using nanoparticle tracking analysis and transmission electron microscopy. Human skin fibroblasts (HSF) were cultured and treated with or without ADSC-EXO, BTX-A, or their combination. Changes in cell phenotypes and protein expression were analyzed using different in vitro assays, and a rat skin wound model was used to assess their in vivo effects. RESULTS: The isolated ADSC-EXO from primarily cultured ADSCs had a circular vesicle shape with a 30-180 nm diameter. Treatment of HSF with ADSC-EXO and/or BTX-A significantly accelerated HSF migration in vitro and skin wound healing in a rat model. Moreover, ADSC-EXO plus BTX-A treatment dramatically induced VEGFA expression but reduced COL III and COL I levels in vivo. ADSC-EXO and/or BTX-A treatment significantly upregulated TGF-ß3 expression on Day 16 after surgery but downregulated TGF-ß1 expression, suggesting that ADSC-EXO plus BTX-A promoted skin wound healing and reduced inflammatory cell infiltration. CONCLUSIONS: The ADSC-EXO plus BTX-A treatment demonstrated a synergistic effect on skin wound healing through upregulation of VEGF expression and the TGF-ß3/TGF-ß1 and COL III/COL I ratio.


Subject(s)
Botulinum Toxins, Type A , Exosomes , Rats , Humans , Animals , Botulinum Toxins, Type A/pharmacology , Exosomes/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolism , Rats, Sprague-Dawley , Stem Cells , Adipose Tissue
14.
J Comput Assist Tomogr ; 48(2): 226-232, 2024.
Article in English | MEDLINE | ID: mdl-37965776

ABSTRACT

OBJECTIVE: This study aimed to investigate changes of computed tomography pulmonary angiography (CTPA)-derived parameters in older adults with acute pulmonary embolism (APE). METHODS: According to the pulmonary artery obstruction index (PAOI), patients with APE were divided into the A1 (PAOI ≥30%, n = 57) and A2 (PAOI <30%, n = 40) groups. Participants without APE were placed in group B (n = 170). The left atrial (LA) and left ventricular (LV) parameters among the three groups were compared, and the parameter changes in the 44 patients with APE were analyzed before and after treatment. The correlation between APE severity and the parameters was analyzed using correlation analysis. RESULTS: The left-to-right diameters (LR) of LA, and LR × anteroposterior diameters (AP) of LA and LV: A1 < A2 < B; LR of LV: A1 < A2, B; AP of LA and LV: A1, A2 < B. After treatment, LR and LR × AP of the LA and LV were significantly increased in the group A1 and LR of the LV and LR × AP of the LA and LV were elevated in the group A2. Acute pulmonary embolism severity was closely associated with LR × AP ( r = -0.557) and LR ( r = -0.477) of LA. CONCLUSIONS: With an increase in the degree of obstruction, older adults had a smaller LA and LV. Furthermore, the LR and LR × AP values of the LA were significantly decreased. These results contribute to in-time risk stratification.


Subject(s)
Hominidae , Pulmonary Embolism , Humans , Animals , Aged , Computed Tomography Angiography/methods , Pulmonary Embolism/diagnostic imaging , Tomography, X-Ray Computed/methods , Angiography/methods , Acute Disease , Retrospective Studies
15.
Acupunct Med ; 42(1): 32-38, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37899603

ABSTRACT

BACKGROUND: Neurogenic bladder (NB) is a form of neurological bladder dysfunction characterized by excessive contraction of the bladder detrusor. Protein kinase A (PKA) signaling is involved in the contraction of the detrusor muscle. AIMS: To investigate whether PKA signaling mediates the effect of electroacupuncture (EA) on the excessive contraction of the bladder detrusor in NB. METHODS: Sixty rats were randomly divided into control, sham, NB, NB + EA, and NB + EA + H89 (a PKA receptor antagonist) groups. The modified Hassan Shaker spinal cord transection method was used to generate a NB model. After EA intervention for one week, urodynamic tests were used to evaluate bladder function, hematoxylin and eosin staining was conducted to assess morphological changes, enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentration of PKA, and Western blotting was conducted to measure the protein levels of phosphorylated myosin light chain kinase (p-MLCK)/p-MLC. RESULTS: The results showed that NB resulted in morphological disruption, impairment of urodynamics, and decreases in the concentration of PKA and the protein levels of p-MLCK/p-MLC. EA reversed the changes induced by NB dysfunction. However, the improvement in urodynamics and the increases in the concentration of PKA and the protein levels of p-MLCK/p-MLC were inhibited by H89. CONCLUSION: Our findings indicate that the PKA signaling pathway mediates the beneficial effect of EA on excessive contraction of the bladder detrusor in a rat model of NB.


Subject(s)
Electroacupuncture , Spinal Cord Injuries , Urinary Bladder, Neurogenic , Rats , Animals , Urinary Bladder , Urinary Bladder, Neurogenic/etiology , Urinary Bladder, Neurogenic/therapy , Signal Transduction , Cyclic AMP-Dependent Protein Kinases
16.
Insect Mol Biol ; 33(1): 81-90, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37815404

ABSTRACT

Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.


Subject(s)
Moths , Receptors, Odorant , Male , Animals , Spodoptera/genetics , Spodoptera/metabolism , Phototaxis , Amino Acid Sequence , Moths/genetics , Larva/genetics , Larva/metabolism , Reproduction , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
17.
J Endourol ; 38(1): 77-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37842848

ABSTRACT

Introduction: Electromotive Drug Administration (EMDA) amplifies drug delivery deep into targeted tissues. We tested, for the first time, the ability of EMDA to deliver methylene blue into the urothelium of the renal pelvis. Materials and Methods: In an anesthetized female pig, both proximal ureters were transected two inches distal to the ureteropelvic junction. An 8F dual lumen catheter and a 5F fenestrated catheter with an indwelling silver wire were inserted into both renal pelvises following which methylene blue (0.1%) was infused at a rate of 5 mL/min for 20 minutes. In one pelvis, a 4 mA positive pulsed electrical current was applied to the silver wire. Results: In contrast to the control pelvis, the EMDA side macroscopically exhibited dense homogeneous staining; microscopy revealed penetration of methylene blue into the urothelium/lamina propria. Conclusion: In the porcine renal pelvis, application of EMDA increased the penetration of a charged molecule into the urothelium/lamina propria.


Subject(s)
Methylene Blue , Silver , Female , Animals , Swine , Kidney Pelvis
18.
Sci Total Environ ; 912: 168924, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036146

ABSTRACT

The global prevalence of Neurological disorders has increased alarmingly in response to environmental and lifestyle changes. Atrazine (ATZ) is a difficult to degrade soil and water pollutant with well-known neurotoxicity. Melatonin (MT), an antioxidant with chemoprotective properties, has a potential therapeutic effect on cerebellar damage caused by ATZ exposure. The aim of this study was to explore the effects and underlying mechanisms of MT on the cerebellar inflammatory response and pyroptosis induced by ATZ exposure. In this study, C57BL/6J mice were treated with ATZ (170 mg/kg BW/day) and MT (5 mg/kg BW/day) for 28 days. Our results revealed that MT alleviated the histopathological changes, ultrastructural damage, oxidative stress and decrease of mitochondrial membrane potential (ΔΨm) in the cerebellum induced by ATZ exposure. ATZ exposure damaged the mitochondria leading to release of mitochondrial DNA (mtDNA) to the cytoplasm, MT activated the cyclic GMP-AMP synthetase interferon gene stimulator (cGAS-STING) axis to alleviate inflammation and pyroptosis caused by ATZ exposure. In general, our study provided new evidence that the cGAS-STING-NLRP3 axis plays an important role in the treatment of ATZ-induced cerebellar injury by MT.


Subject(s)
Atrazine , Melatonin , Nucleotides, Cyclic , Animals , Mice , Atrazine/toxicity , Atrazine/metabolism , Melatonin/metabolism , Pyroptosis , Interferons/metabolism , Interferons/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Mice, Inbred C57BL , Mitochondria , DNA, Mitochondrial , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology
19.
J Urol ; 211(2): 256-265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37889957

ABSTRACT

PURPOSE: Given the shortcomings of current stone burden characterization (maximum diameter or ellipsoid formulas), we sought to investigate the diagnostic accuracy and precision of a University of California, Irvine-developed artificial intelligence (AI) algorithm for determining stone volume determination. MATERIALS AND METHODS: A total of 322 noncontrast CT scans were retrospectively obtained from patients with a diagnosis of urolithiasis. The largest stone in each noncontrast CT scan was designated the "index stone." The 3D volume of the index stone using 3D Slicer technology was determined by a validated reviewer; this was considered the "ground truth" volume. The AI-calculated index stone volume was subsequently compared with ground truth volume as well with the scalene, prolate, and oblate ellipsoid formulas estimated volumes. RESULTS: There was a nearly perfect correlation between the AI-determined volume and the ground truth (R=0.98). While the AI algorithm was efficient for determining the stone volume for all sizes, its accuracy improved with larger stone size. Moreover, the AI stone volume produced an excellent 3D pixel overlap with the ground truth (Dice score=0.90). In comparison, the ellipsoid formula-based volumes performed less well (R range: 0.79-0.82) than the AI algorithm; for the ellipsoid formulas, the accuracy decreased as the stone size increased (mean overestimation: 27%-89%). Lastly, for all stone sizes, the maximum linear stone measurement had the poorest correlation with the ground truth (R range: 0.41-0.82). CONCLUSIONS: The University of California, Irvine AI algorithm is an accurate, precise, and time-efficient tool for determining stone volume. Expanding the clinical availability of this program could enable urologists to establish better guidelines for both the metabolic and surgical management of their urolithiasis patients.


Subject(s)
Kidney Calculi , Urolithiasis , Humans , Artificial Intelligence , Kidney Calculi/diagnostic imaging , Retrospective Studies , Algorithms , Tomography, X-Ray Computed , Urolithiasis/diagnostic imaging
20.
Am J Clin Exp Urol ; 11(6): 516-529, 2023.
Article in English | MEDLINE | ID: mdl-38148939

ABSTRACT

The decline of urethral function with advancing age plays a major role in urinary incontinence in women, impairing quality of life and economically burdening the health care system. However, none of the current urinary incontinence treatments address the declining urethral function with aging, and the mechanisms by which aging impacts urethra physiology remain little known or explored. Here, we have compared functional, morphometric, and global gene expression of urethral tissues between young and old female mice. Bladder leak point pressure (LPP) measurement showed that the aged female mice had 26.55% lower LPP compared to younger mice. Vectorized Scale-Invariant Pattern Recognition (VIPR) analysis of the relative abundance of different tissue components revealed that the mid-urethra of old female mice contains less striated muscle, more extracellular matrix/fibrosis, and diminished elastin fibers ratio compared to young mice. Gene expression profiling analysis (bulk RNA-seq of the whole urethra) showed more down-regulated genes in aged than young mice. Immune response and muscle-related (striated and smooth) pathways were predominantly enriched. In contrast, keratinization, skin development, and cell differentiation pathways were significantly downregulated in aged urethral tissues compared to those from young female mice. These results suggest that molecular pathways (i.e., ACVR1/FST signaling and CTGF/TGF-ß signaling) leading to a decreased striated muscle mass and an increase in fibrous extracellular matrix in the process of aging deserve further investigation for their roles in the declined urethral function.

SELECTION OF CITATIONS
SEARCH DETAIL
...