Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(18): 12658-12664, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645517

ABSTRACT

Organic electrode materials are extensively applied for potassium storage as their sustainability and low cost. However, the organic electrodes' (i) solubility (such as naphthalene-1,4,5,8-tetracarboxylic dianhydride, NTCDA; 2,6-diaminoanthanthraquinone, DAQ, which are easily soluble in organic solvents) and (ii) intrinsic poor conductivity often result in high impedance and inferior electrochemical performance. Herein, the monomers of NTCDA and DAQ were polymerized (PND) to obtain an insoluble organic cathode, and a 5 wt% graphite (G) was also used to graft the PND sheet and increase its conductivity. Consequently, the as-prepared organic cathode (PND-G) achieved a long-life cycling performance of over 1500 cycles at 100 mA g-1. This work may provide guidelines for designing and developing insoluble and high conductive organic electrode materials.

2.
Nanomicro Lett ; 15(1): 200, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596502

ABSTRACT

High degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier to trim K ion's DOF to 1 and improve electrochemical properties. Although the ionic conductivity is compromised in the K+ flux rectifier, the overall electrochemical performance of PIBs was improved. An oxidation stability improvement from 4.0 to 5.9 V was realized, and the formation of dendrites and the dissolution of organic cathodes were inhibited. Consequently, the K||K cells continuously cycled over 3,700 h; K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%; and K||graphite cells exhibited high-capacity retention over 74.7% after 1,500 cycles. Moreover, the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time. We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.

3.
Natl Sci Rev ; 10(7): nwad118, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37389185

ABSTRACT

The relative natural abundance of potassium and potentially high energy density has established potassium-ion batteries as a promising technology for future large-scale global energy storage. However, the anodes' low capacity and high discharge platform lead to low energy density, which impedes their rapid development. Herein, we present a possible co-activation mechanism between bismuth (Bi) and tin (Sn) that enhances K-ion storage in battery anodes. The co-activated Bi-Sn anode delivered a high capacity of 634 mAh g-1, with a discharge plateau as low as 0.35 V, and operated continuously for 500 cycles at a current density of 50 mA g-1, with a high Coulombic efficiency of 99.2%. This possible co-activation strategy for high potassium storage may be extended to other Na/Zn/Ca/Mg/Al ion battery technologies, thus providing insights into how to improve their energy storage ability.

4.
Adv Mater ; 35(29): e2302280, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37078585

ABSTRACT

Aqueous electrolytes are highly important for batteries due to their sustainability, greenness, and low cost. However, the free water molecules react violently with alkali metals, rendering the high-capacity of alkali-metal anodes unusable. Here, water molecules are confined in a carcerand-like network to build quasi-solid aqueous electrolytes (QAEs) with reduced water molecules' freedom and matched with the low-cost chloride salts. The formed QAEs possess substantially different properties than liquid water molecules, including stable operation with alkali-metal anodes without gas evolution. Specifically, the alkali-metal anodes can directly cycle in a water-based environment with suppressed growth of dendrites, electrode dissolution, and polysulfide shuttle. Li-metal symmetric cells achieved long-term cycling over 7000 h (and over 5000/4000 h for Na/K symmetric cells), and all the Cu-based alkali-metal cells exhibited a Coulombic efficiency of over 99%. Full metal batteries, such as Li||S batteries, attained high Coulombic efficiency, long life (over 4000 cycles), and unprecedented energy density among water-based rechargeable batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...