Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732729

ABSTRACT

Cellulose-based aerogel has attracted considerable attention for its excellent adsorption capacity, biodegradability, and renewability. However, it is considered eco-unfriendly due to defibrillation of agriculture waste and requires harmful/expensive chemical agents. In this study, cornstalk rind-based aerogel was obtained via the following steps: green H2O2/HAc delignification of cornstalk rind to obtain cellulose fibers, binding with carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) and freeze-drying treatment, and hydrophobic modification with stearic acid. The obtained aerogel showed high compressive strength (200 KPa), which is apparently higher (about 32 kPa) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. Characterization of the obtained aerogel through SEM, water contact angle, etc., showed high porosity (95%), low density (0.0198 g/cm-3), and hydrophobicity (water contact angle, 159°), resulting in excellent n-hexane adsorption capacity (35 g/g), higher (about 29.5 g/g) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. The adsorbed oil was recovered by the extrusion method, and the aerogel showed excellent recyclability in oil adsorption.

2.
Vox Sang ; 118(8): 647-655, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37322810

ABSTRACT

BACKGROUND AND OBJECTIVES: Cryopreserved platelets (cPLTs) can be stored for years and are mainly used in military settings. However, the commonly used cryoprotectant dimethyl sulphoxide (DMSO) has toxic side effects when utilized in high quantities. We developed a novel method to aseptically remove DMSO from thawed cPLTs by dialysis. MATERIALS AND METHODS: One unit of platelets (N = 6) was mixed with 75 mL of 27% DMSO within 4 days after collection and stored at -80°C for 1 week. The platelet counts, platelet distribution width, mean platelet volume (MPV), platelet activity, platelet release, platelet aggregation, platelet metabolism indicators and platelet ultrastructural features (determined by electron microscopy) of the samples at the pre-freeze, post-thaw wash (post-TW) and 24 h post-thaw wash (24-PTW) stages were determined and compared. RESULTS: The DMSO clearance rate from the post-TW platelets was 95.56 ± 1.3%, and the platelet recovery rate after washing was 74.66 ± 6.34%. The total count, activity, release factors, aggregation and thrombolytic ability of the post-TW platelets were lower, whereas the MPV and apoptosis rates were higher compared with those of the pre-freeze platelets. The lactic acid, glucose and potassium ions released from the platelets during washing were filtered away by the dialyser, which significantly reduced their concentration. However, 24-PTW platelets were metabolically active, resulting in a decrease in pH and glucose content and an increase in lactic acid content. The level of potassium ions remained low after 24 h of storage and washing. The pre-freeze platelets maintained their normal disc shape and exhibited an open canalicular system (OCS) and a dense tubular system. The cPLTs appeared irregular after washing, with protruding pseudopodia and an extensive OCS, which increased the release of their contents. CONCLUSION: We developed a novel dialysis method to effectively remove DMSO from cPLTs under aseptic conditions and maintain platelet quality. The clinical efficacy of our method remains to be determined. However, the function of the platelets declined 24 h after washing, making them unsuitable for transfusion.


Subject(s)
Blood Platelets , Dimethyl Sulfoxide , Humans , Blood Platelets/metabolism , Blood Preservation/methods , Renal Dialysis , Cryopreservation/methods , Glucose/metabolism , Lactic Acid/metabolism
3.
Polymers (Basel) ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050347

ABSTRACT

Hydrogen peroxide (H2O2) steaming, a green and highly efficient delignification method, has been demonstrated to provide a wood skeleton with a very low content of residual lignin in the manufacturing of transparent wood. It usually requires a long reaction time and a large amount of H2O2 because the piece of wood is treated using steaming equipment. Herein, a H2O2 solution steaming method was developed for the highly efficient removal of lignin from wood. Specifically, several wood samples were simultaneously immersed in a hot H2O2 solution to obtain delignified wood with a relatively high content of residual lignin, which provided a high strength and preserved the cellulose skeleton. Subsequently, the delignified wood with a relatively high content of residual lignin was further treated with H2O2 steam to obtain a very low lignin delignified wood. Compared with the previous H2O2 steaming method, the reaction time and used H2O2 volume of the H2O2 solution steaming method was reduced by 37.3% and 52.7%, respectively. All-biomass transparent wood could be obtained by infiltrating the delignified wood with cellulose acetate, which showed both a high transmittance of 83.0% and a low thermal conductivity of 0.30 Wm-1K-1.

4.
ACS Appl Mater Interfaces ; 15(1): 684-696, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36592343

ABSTRACT

Encouraging advances in both regenerative medicine and tissue engineering with stem cells require a short-term preservation protocol to provide enough time for quality control or the transportation of cell products from manufacturing facilities to clinical destinations. The hypothermic preservation of stem cells under refrigerated conditions (2-8 °C) in their specific culture medium provides an alternative and low-cost method for cryopreservation or commercial preservation fluid for short-term storage. However, most stem cells are vulnerable to hypothermia, which might result in cell damage from the cooling process and the lack of extracellular matrix (ECM). Herein, we report a peptide scaffold cell-culture-medium additive for mimicking in vivo ECM to enhance the storage efficiency of mesenchymal stem cells (MSCs) under hypothermic preservation. Peptide scaffolds exhibit protective effects against hypothermic injury by maintaining the viability, proliferation, migration, and differentiation capabilities of cells. The mechanistic study showed that the peptide scaffold was conducive to maintain mitochondrial function by retaining mitochondrial respiration, mitochondrial membrane potential (ΔΨm), and mass to alleviate intracellular and mitochondrial reactive oxygen species (ROS) production. Moreover, the peptide scaffold also prolonged the survival and retained the multipotency of hematopoietic stem and progenitor cells (HSPCs) under hypothermic conditions. In conclusion, these results demonstrate a feasible and convenient preservation system for stem cells that has the potential to promote the clinical application of hematopoietic stem cell therapy.


Subject(s)
Hypothermia , Humans , Hypothermia/metabolism , Stem Cells , Cryopreservation/methods , Tissue Engineering/methods , Cell Differentiation , Extracellular Matrix/metabolism , Tissue Scaffolds
5.
ACS Appl Mater Interfaces ; 13(32): 38040-38049, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34346206

ABSTRACT

Human platelets (PLTs) are vulnerable to unfavorable conditions, and their adequate supply is limited by strict transportation conditions. We report here that PLTs preserved under three-dimensional (3D) conditions using novel biomimetic nanofiber peptides showed reduced apoptosis compared with classical PLTs stored at 22 °C and facilitated the storage and transportation of PLTs. The mechanism of PLT 3D preservation involves the formation of cross-links and a 3D nanofibrous network by a self-assembled peptide scaffold material at physiological conditions after initiation by triggers in plasma. PLTs adhere to the surface of the nanofibrous network to facilitate the 3D distribution of PLTs. The 3D microstructure, rheological properties, and effect on the inflammatory response and hemolysis were evaluated. Compared to traditional PLTs stored at 22 °C, PLTs subjected to 3D preservation showed similar morphology, number, aggregation activity, and reduced apoptosis. The detection of the reactive oxygen species (ROS) levels demonstrated that both reduced intracellular and mitochondrial ROS levels were correlated with reduced apoptosis. This study reveals a new 3D preservation method for PLTs based on the use of novel biomimetic nanofiber peptides that presents an attractive opportunity for various biomedical applications.


Subject(s)
Biomimetics/methods , Blood Platelets/metabolism , Blood Preservation/methods , Nanofibers/chemistry , Animals , Apoptosis , Humans , Mice, Inbred BALB C , Platelet Aggregation , Platelet Transfusion , Reactive Oxygen Species
6.
PLoS One ; 15(1): e0227862, 2020.
Article in English | MEDLINE | ID: mdl-31995595

ABSTRACT

BACKGROUND: The effect of phase-change material blood containers on the quality of stored red blood cells (RBCs) transported in the Qinghai-Tibet Plateau remains to be studied. STUDY DESIGN AND METHODS: RBCs stored in a phase-change material blood container were transported from Chengdu to Tibet and then back to Chengdu. The detection time points were the 1st day of fresh-collected RBCs (group 1), the 14th day of resting refrigerated storage (group 2), and the 14th day of plateau transportation under refrigerated storage in the container (group 3). RBC counts, hemoglobin (HGB) content, free hemoglobin (FHb) content, blood biochemical indexes, hemorheologic indexes and 2,3-DPG content were detected. RESULTS: Compared with group 2, RBC counts and HGB were decreased, and the mean corpuscular volume (MCV), FHb and K+ content were increased in group 3. The glucose consumption and lactic acid production were significantly increased in groups 2 and 3. Compared with group 2, the 2,3-DPG content and whole blood viscosity were decreased in group 3. After resting refrigerated storage and plateau transportation, the RBC quality still met the national standard (GB18469-2012 whole blood and component blood quality requirements). CONCLUSION: The phase-change material blood container can be maintained at a constant temperature under plateau environmental conditions, ensuring that the quality of the stored RBCs is compliant with GB18469-2012 whole blood and component blood quality requirements.


Subject(s)
Blood Preservation/instrumentation , Erythrocytes/chemistry , Specimen Handling/instrumentation , Transportation , 2,3-Diphosphoglycerate/blood , Erythrocyte Count , Glucose/metabolism , Hematopoietic System/metabolism , Hemoglobins/metabolism , Humans , Lactic Acid/blood , Tibet
7.
FEBS Open Bio ; 7(4): 485-494, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28396834

ABSTRACT

Dimethyl sulfoxide (DMSO) is widely used in biological studies as a cryoprotective agent for cells and tissues, and also for cryopreserved platelets (PLTs). However, few data on the toxic effects of DMSO following intravenous infusion of cryopreserved PLTs are available. The aim of this study was to explore dose-related effects of DMSO on red blood cells (RBCs), PLTs and vascular endothelial cells in vitro. The results showed that DMSO treatments had significant effects on RBCs, affecting osmotic fragility and increasing hemolysis. Free hemoglobin (FHb) level of RBCs was 0.64 ± 0.19 g L-1 after incubation for 6 h with 0.6% DMSO, and these levels were elevated compared with controls (0.09 ± 0.05 g L-1). Aggregation of PLTs induced by adenosine diphosphate, thrombin (THR), and thrombin receptor activator peptide (TRAP) were inhibited by DMSO treatment because the THR generation capacity was reduced. The intensity of the cytosolic esterase-induced fluorescence response from carboxy dimethyl fluorescein diacetate (CMFDA) in PLTs was decreased about 29% ± 0.04% after treatment with DMSO. DMSO also inhibited the proliferation of the vascular endothelial cell line EAhy926 cells by blocking the G1 phase. Apoptosis of EAhy926 cells with 0.6% DMSO stimulation was increased threefold compared to controls. On the basis of these findings, it was concluded that DMSO was toxic to the hematologic system. This should be taken into account when assessing the infusion effects of cryopreserved PLTs or other blood products requiring DMSO as a vehicle, such as cryopreserved stem cells, in order to avoid adverse therapeutic effects.

8.
PLoS One ; 10(9): e0138509, 2015.
Article in English | MEDLINE | ID: mdl-26390135

ABSTRACT

It has been hypothesized that the cytosolic esterase-induced fluorescence intensity (CEIFI) from carboxy dimethyl fluorescein diacetate (CMFDA) in platelets may related to platelet functions. In the present study, we measured the change of CEIFI in platelets during storage, and examined the correlations of CEIFI with the in vitro functionality of stored platelets, including the ADP-induced aggregation activity, hypotonic shock response, expression of CD62P as well as platelet apoptosis. The CEIFI of fresh platelets, when tested at 10 µM CMFDA, the mean fluorescence intensity index (MFI) was 305.9 ± 49.9 (N = 80). After 1-day storage, it was 203.8 ± 34.4, the CEIFI of the stored platelets started to decline significantly, and reduced to 112.7 ±27.7 after 7-day storage. The change in CEIFI is highly correlated to all four functional parameters measured, with the correlation coefficients being 0.9813, 0.9848, -0.9945 and -0.9847 for the ADP-induced aggregation activity, hypotonic shock response (HSR), expression of CD62P and platelet apoptosis respectively. The above results show that the CEIFI measurement of platelets represents well the viability and functional state of in vitro stored platelets. This may be used as a convenient new method for quality evaluation for stored platelets if this result can be further validated by the following clinical trials.


Subject(s)
Blood Platelets/cytology , Blood Platelets/metabolism , Blood Preservation , Esterases/metabolism , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Platelet Function Tests , Apoptosis , Blood Platelets/enzymology , Cytosol/enzymology , Cytosol/metabolism , Fluorescence , Humans , P-Selectin/analysis , Platelet Aggregation
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 23(4): 1152-5, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26314463

ABSTRACT

OBJECTIVE: To evaluate the storage performance of the domestically made platelet storage bags (experimental group) and the United States Trima set platelet storage bags (control group). METHODS: The manually separated platelets were divided in two equal parts, which was added to control blood bags and experimental blood bags respectively, all samples were stored at a 22 °C ± 2 °C. The platelet count, mean volume, aggregation activity (ADP, THR), pH, glucose, lactate concentration, lactate dehydrogenase concentration, hypotonic shock reaction, CD62P and phosphatidic acid serine content were detected at day 0, 3, 5 and 7 of storage. RESULTS: There was no significant difference of platelet quality at day 5 after storage between the experimental group and the control group (T-test, P > 0.05). CONCLUSION: Two kinds of platelet storage bags have the similar storage performance.


Subject(s)
Blood Platelets , Blood Preservation , Cell Separation , Glucose , Humans , Platelet Count
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 22(6): 1761-5, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25543512

ABSTRACT

Platelets are important component in the blood which play vital role in physiological hemostasis. In clinic, platelets are usually transfused to patients suffered from idiopathic thrombocytopenic purpura,thrombocytopenia after chemotherapy and radiotherapy,or hemorrhagic thrombocytopenia caused by other reasons. Storage time for platelet concentrates is limited to five days at room temperature, leading to an increasing number of scrap rate, therefore the prolonging the storage time is important for clinical application. Storage at -80°C is an ideal long-term cryopreservation method for platelet concentrates. In this article, platelets cryopreservation,the mechanism of frozen injury and the protective mechanisms of platelets were reviewed.


Subject(s)
Blood Platelets , Blood Preservation , Cryopreservation , Freezing , Hemostasis , Humans , Thrombocytopenia
SELECTION OF CITATIONS
SEARCH DETAIL
...