Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.957
Filter
1.
Environ Int ; 189: 108785, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38823155

ABSTRACT

Sex and thyroid hormones are critical for male reproductive health. However, the associations between haloacetic acid (HAA) exposure - a known endocrine disruptor - and sex and thyroid hormones in humans remains unclear. We thus recruited 502 male participants seeking fertility evaluation from a reproductive center. We measured concentrations of sex and thyroid hormones in a single blood sample and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in repeated urine samples. Multivariable linear regression models were constructed to evaluate the associations between HAA concentrations and hormone measurements. After adjusting for potential confounders and urinary creatinine concentrations, urinary concentrations of TCAA were inversely associated with serum levels of sex hormone-binding globulin (SHBG), testosterone (T), T/luteinizing hormone ratio (T/LH), and thyroid stimulating hormone (TSH) (all P for trend < 0.10). Compared with participants in the lowest quartile of TCAA concentrations, those in the highest quartile had reduced serum levels of SHGB by 14.2 % (95% CI: -26.7, -3.0 %), T by 11.1 % (95% CI: -21.7, -1.3 %), T/LH by 21.0 % (95% CI: -36.7, -7.1 %), and TSH by 19.1 % (95% CI: -39.7, -1.5 %). Additionally, we observed inverse associations between continuous measurements of urinary HAAs and serum levels of free T, bioactive T, and estradiol. Our findings suggest that male HAA exposure may be associated with disrupted sex and thyroid function.

2.
Cell Rep ; 43(6): 114290, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823012

ABSTRACT

Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.

3.
Article in English | MEDLINE | ID: mdl-38719187

ABSTRACT

Over one year, two KPC-producing and two non-KPC-producing Klebsiella pneumoniae strains were isolated from a patient. Genome and DNA hybridization analyses revealed the first three strains as a clonal lineage, with carbapenem resistance changes due to a Tn2-like transposon on an IncR/IncFII plasmid. The fourth strain, carrying three plasmids, caused a lethal infection and represented a different lineage. All strains belonged to the ST11-SL47-OL101 type. This study highlights the Tn2-like transposon's role in carbapenemase gene spread and the importance of distinguishing between bacterial colonization and infection.

4.
Acta Paediatr ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714365

ABSTRACT

AIM: Few studies have assessed the association between weight changes from childhood to adulthood and cardiometabolic factors in adulthood. The aim of this study was to explore the relationships between weight changes from childhood to adulthood and cardiometabolic factors in adulthood using national Chinese data. METHODS: We included 649 participants from the China Health and Nutrition Survey from 1989 to 2009 and divided them into four groups by their body mass index from 6 to 37 years of age. They were selected using multistage random cluster sampling from 15 areas with large variations in economic and social development. Poisson regression models assessed associations between weight status changes and cardiometabolic outcomes in adulthood. RESULTS: The risk of multiple abnormal cardiometabolic outcomes in adulthood was increased in the 126 subjects with normal weight in childhood but overweight or obesity in adulthood and the 28 with obesity at both ages, compared to the 462 with normal weight at both ages. There was insufficient evidence to demonstrate that the 33 who had weight issues as children, but not as adults, had an increased risk. CONCLUSION: Being overweight or obese in both childhood and adulthood or during adulthood only increased the risk of abnormal cardiometabolic outcomes in adulthood. Larger studies need to investigate whether weight problems in childhood, but not adulthood, increase the risk.

5.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760710

ABSTRACT

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Subject(s)
Chromosomes, Plant , Genome, Plant , Rosa , Rosa/genetics , Rosa/metabolism , Chromosomes, Plant/genetics , Databases, Genetic , Secondary Metabolism/genetics , Ascorbic Acid/metabolism , Ascorbic Acid/biosynthesis
6.
Nucleic Acids Res ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783063

ABSTRACT

Native prokaryotic promoters share common sequence patterns, but are species dependent. For understudied species with limited data, it is challenging to predict the strength of existing promoters and generate novel promoters. Here, we developed PromoGen, a collection of nucleotide language models to generate species-specific functional promoters, across dozens of species in a data and parameter efficient way. Twenty-seven species-specific models in this collection were finetuned from the pretrained model which was trained on multi-species promoters. When systematically compared with native promoters, the Escherichia coli- and Bacillus subtilis-specific artificial PromoGen-generated promoters (PGPs) were demonstrated to hold all distribution patterns of native promoters. A regression model was developed to score generated either by PromoGen or by another competitive neural network, and the overall score of PGPs is higher. Encouraged by in silico analysis, we further experimentally characterized twenty-two B. subtilis PGPs, results showed that four of tested PGPs reached the strong promoter level while all were active. Furthermore, we developed a user-friendly website to generate species-specific promoters for 27 different species by PromoGen. This work presented an efficient deep-learning strategy for de novo species-specific promoter generation even with limited datasets, providing valuable promoter toolboxes especially for the metabolic engineering of understudied microorganisms.

7.
Environ Res ; 255: 119087, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719064

ABSTRACT

Pesticides play a crucial role in securing global food production to meet increasing demands. However, because of their pervasive use, they are now ubiquitous environmental pollutants that have adverse effects on both ecosystems and human health. In this study, the environmental occurrence and fate of 16 current-use pesticides (CUPs) were investigated in 93 forest soil samples obtained from 11 distinct mountains in China. The concentrations of the target pesticides ranged from 0.36 to 55 ng/g dry weight. Cypermethrin, dicofol, chlorpyrifos, chlorothalonil, and trifluralin were the most frequently detected CUPs. The CUP concentrations were generally higher in the O-horizon than in the A-horizon. Chlorpyrifos, chlorothalonil, and dicofol were detected in most deep layers in soil profiles from three mountains selected to represent distinct climate zones. No clear altitudinal trend in organic carbon-normalized concentrations of CUPs was observed in the O- or A-horizons within individual mountains. A negative correlation was noted between the CUP concentrations and the altitudes across all sampling sites. This indicated that proximity to emission sources was a key factor affecting the spatial distribution of CUPs in mountain forest soil on a national scale. The ecological risk assessment showed that dicofol and cypermethrin pose potential risks to earthworms. This study emphasizes the importance of source control when setting management strategies for CUPs.

8.
Free Radic Biol Med ; 221: 111-124, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763207

ABSTRACT

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.

9.
Environ Sci Technol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819024

ABSTRACT

Exposure to fine particulate matter (PM2.5) during pregnancy has been inversely associated with neonatal neurological development. However, the associations of exposure to specific PM2.5 constituents with neonatal neurological development remain unclear. We investigated these associations and examined the mediating role of meconium metabolites in a Chinese birth cohort consisting of 294 mother-infant pairs. Our results revealed that exposure to PM2.5 and its specific constituents (i.e., organic matter, black carbon, sulfate, nitrate, and ammonium) in the second trimester, but not in the first or third trimester, was inversely associated with the total neonatal behavioral neurological assessment (NBNA) scores. The PM2.5 constituent mixture in the second trimester was also inversely associated with NBNA scores, and sulfate was identified as the largest contributor. Furthermore, meconium metabolome analysis identified four metabolites, namely, threonine, lysine, leucine, and saccharopine, that were associated with both PM2.5 constituents and NBNA scores. Threonine was identified as an important mediator, accounting for a considerable proportion (14.53-15.33%) of the observed inverse associations. Our findings suggest that maternal exposure to PM2.5 and specific constituents may adversely affect neonatal behavioral development, in which meconium metabolites may play a mediating role.

11.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811773

ABSTRACT

Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Like cancer cells, immune cells within the tumor microenvironment or premetastatic niche also undergo extensive metabolic reprogramming, which profoundly impacts anti-tumor immune responses. Numerous evidence has illuminated that immunosuppressive TME and the metabolites released by tumor cells, including lactic acid, Prostaglandin E2 (PGE2), fatty acids (FAs), cholesterol, D-2-Hydroxyglutaric acid (2-HG), adenosine (ADO), and kynurenine (KYN) can contribute to CD8+ T cell dysfunction. Dynamic alterations of these metabolites between tumor cells and immune cells can similarly initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response. This review summarizes the new landscape beyond the classical metabolic pathways in tumor cells, highlighting the pivotal role of metabolic disturbance in the immunosuppressive microenvironment, especially how nutrient deprivation in TME leads to metabolic reprogramming of CD8+ T cells. Likewise, it emphasizes the current therapeutic targets or strategies related to tumor metabolism and immune response, providing therapeutic benefits for tumor immunotherapy and drug development in the future. Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Dynamic alterations of metabolites between tumor cells and immune cells initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response.

12.
Environ Pollut ; 355: 124229, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801876

ABSTRACT

Inappropriate handling of lead (Pb)-containing wastewater that is produced as a result of smelting activities threatens the surrounding environment and human health. The microbial-induced phosphate precipitation (MIPP) technology was applied to immobilize Pb2+ in an aqueous solution considering bacterial phosphorolysis ability and Ca-mediated alleviation of lead toxicity. Pb immobilization was accompanied by sample characterization in order to explore the inherent mechanism that affected the immobilization efficiency. Results showed that Ca2+ use elevated the immobilization efficiency through the prevention of bacterial physisorption and chemisorption, an enhancement to the phosphatase activity and the degree of SGP hydrolysis, and the provision of nucleation sites for Pb2+ to attach. The formation of the Pb-GP complex helped the bacteria to maintain its activity at the commencement of catalyzing SGP hydrolysis. The nucleated minerals that were precipitated in a columnar shape through a directional stacking manner under MIPP featured higher chemical stability compared to non-nucleated minerals. As a result, there were three pathways, namely, bacterial physisorption, bacterial chemisorption, and substrate chelation, applied for Pb immobilization. The immobilization efficiency of 99.6% is achieved by precipitating bioprecipitates including Pb5(PO4)3Cl, Pb10(PO4)6Cl2, and Ca2Pb3(PO4)3Cl. The findings accentuate the potential of applying the MIPP technology to Pb-containing wastewater remediation.

13.
World J Hepatol ; 16(5): 809-821, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818287

ABSTRACT

BACKGROUND: Acute-on-chronic liver disease (AoCLD) accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases. AIM: To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD. METHODS: Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure (ACLF) study cohort were included in this study. The clinical characteristics and outcomes, and the 90-d survival rate associated with each clinical type of AoCLD were analyzed, using the Kaplan-Meier method and the log-rank test. RESULTS: A total of 3375 patients with AoCLD were enrolled, including 1679 (49.7%) patients with liver cirrhosis acute decompensation (LC-AD), 850 (25.2%) patients with ACLF, 577 (17.1%) patients with chronic hepatitis acute exacerbation (CHAE), and 269 (8.0%) patients with liver cirrhosis active phase (LC-A). The most common cause of chronic liver disease (CLD) was HBV infection (71.4%). The most common precipitants of AoCLD was bacterial infection (22.8%). The 90-d mortality rates of each clinical subtype of AoCLD were 43.4% (232/535) for type-C ACLF, 36.0% (36/100) for type-B ACLF, 27.0% (58/215) for type-A ACLF, 9.0% (151/1679) for LC-AD, 3.0% (8/269) for LC-A, and 1.2% (7/577) for CHAE. CONCLUSION: HBV infection is the main cause of CLD, and bacterial infection is the main precipitant of AoCLD. The most common clinical type of AoCLD is LC-AD. Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF.

14.
Int J Biol Macromol ; 268(Pt 2): 131961, 2024 May.
Article in English | MEDLINE | ID: mdl-38692535

ABSTRACT

LncRNAs have shown to regulate ferroptosis in colorectal cancer (CRC), but the mechanism remains largely unknown. This study unveiled the mechanism of SNHG4 underlying ferroptosis in CRC. RNA-seq and RT-PCR assay confirmed SNHG4 was decreased after Erastin treatment in CRC cells. Overexpression of SNHG4 inhibited and silence promoted CRC cells ferroptosis. SNHG4 was positively correlated to c-Myb in CRC tissues and both located in cytoplasm of CRC cells. RIP and RNA pull-down assays verified the interaction between SNHG4 and c-Myb. Silence of c-Myb alleviated the suppressing effect on ferroptosis by SNHG4 in CRC cells. Dual-luciferase reporter assay revealed that SNHG4 sponging miR-150-5p in CRC cells. Overexpression of SNHG4 decreased the miR-150-5p and increased c-Myb expression. c-Myb was a direct target gene of miR-150-5p in CRC cells. Moreover, effect of CDO1 on ferroptosis was regulated transcriptionally by c-Myb, overexpression of c-Myb reduce CDO1 expression and enhance the GPX4 levels. The animal models confirmed that regulatory effect of SNHG4 on miR-150-5p and c-Myb after inducing ferroptosis. We concluded that SNHG4 inhibited Erastin-induce ferroptosis in CRC, this effect is via sponging miR-150-5p to regulate c-Myb expression, and activated CDO1/GPX4 axis. These findings provide insights into the regulatory mechanism of SNHG4 on ferroptosis.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Gene Expression Regulation, Neoplastic , MicroRNAs , Proto-Oncogene Proteins c-myb , RNA, Long Noncoding , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Animals , Mice , Cell Line, Tumor , Male , Mice, Nude
15.
BMJ Open Ophthalmol ; 9(1)2024 May 24.
Article in English | MEDLINE | ID: mdl-38789272

ABSTRACT

PURPOSE: Myopia, especially high myopia (HM), represents a widespread visual impairment with a globally escalating prevalence. This study aimed to elucidate the genetic foundations associated with early-onset HM (eoHM) while delineating the genetic landscape specific to Shaanxi province, China. METHODS: A comprehensive analysis of whole-exome sequencing was conducted involving 26 familial trios displaying eoHM. An exacting filtration protocol identified potential candidate mutations within acknowledged myopia-related genes and susceptibility loci. Subsequently, computational methodologies were employed for functional annotations and pathogenicity assessments. RESULTS: Our investigation identified 7 genes and 10 variants associated with HM across 7 families, including a novel mutation in the ARR3 gene (c.139C>T, p.Arg47*) and two mutations in the P3H2 gene (c.1865T>C, p.Phe622Ser and c.212T>C, p.Leu71Pro). Pathogenic mutations were found in syndromic myopia genes, notably encompassing VPS13B, TRPM1, RPGR, NYX and RP2. Additionally, a thorough comparison of previously reported causative genes of syndromic myopia and myopia risk genes with the negative sequencing results pinpointed various types of mutations within risk genes. CONCLUSIONS: This investigation into eoHM within Shaanxi province adds to the current understanding of myopic genetic factors. Our results warrant further functional validation and ocular examinations, yet they provide foundational insights for future genetic research and therapeutic innovations in HM.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Mutation , Pedigree , Humans , Female , Male , Genetic Predisposition to Disease/genetics , Adult , China/epidemiology , DNA Mutational Analysis , Myopia, Degenerative/genetics , Myopia, Degenerative/diagnosis , Child , Adolescent , Myopia/genetics , Myopia/epidemiology , Young Adult
16.
Microb Pathog ; 192: 106714, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801864

ABSTRACT

Porcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old. Neutralizing antibody assay showed that the level of the inactivated PDCoV group was still ≥1:64 at three months after prime vaccination. The three-month-old pigs were orally challenged with PDCoV strain CZ2020. Two pigs in challenge control group showed mild to severe diarrhea at 10-11 day-post-challenge (DPC), while the inactivated PDCoV group had no diarrhea. High levels of viral shedding, substantial intestinal villus atrophy, and positive straining of viral antigens in ileum were detected in challenge control group, while the pigs in inactivated PDCoV group exhibited significantly reduced viral load, minor intestinal villi damage and negative straining of viral antigens. These results demonstrated that PDCoV was pathogenic against three-month-old pigs and inactivated PDCoV vaccine can provide effective protection in pigs lasting for three months.

17.
Comput Biol Med ; 176: 108559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759586

ABSTRACT

In order to achieve highly precise medical image segmentation, this paper presents ConvMedSegNet, a novel convolutional neural network designed with a U-shaped architecture that seamlessly integrates two crucial modules: the multi-receptive field depthwise convolution module (MRDC) and the guided fusion module (GF). The MRDC module's primary function is to capture texture information of varying sizes through multi-scale convolutional layers. This information is subsequently utilized to enhance the correlation of global feature data by expanding the network's width. This strategy adeptly preserves the inherent inductive biases of convolution while concurrently amplifying the network's ability to establish dependencies on global information. Conversely, the GF module assumes responsibility for implementing multi-scale feature fusion by connecting the encoder and decoder components. It facilitates the transfer of information between features that are separated over substantial distances through guided fusion, effectively minimizing the loss of critical data. In experiments conducted on public medical image datasets such as BUSI and ISIC2018, ConvMedSegNet outperforms several advanced competing methods, yielding superior results. Additionally, the code can be accessed at https://github.com/csust-yixin/ConvMedSegNet.


Subject(s)
Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods
18.
Anal Chem ; 96(21): 8416-8423, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38755966

ABSTRACT

Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process. The open-gap Au/AgAu displays much higher SERS efficiency than Au and Au/AgAu with an inner nanogap on detecting crystal violet due to the open-gap induced electromagnetic enhancement and improved molecular absorption. Furthermore, the open-gap Au/AgAu monolayer is prepared via interfacial self-assembly, which shows further improved SERS due to the dense and strong hotspots in the nanocavities induced by the electromagnetic coupling between adjacent open gaps. The monolayer possesses excellent signal stability, uniformity, and reproducibility. The analytic enhancement factor and relative standard deviation reach to 2.12 × 108 and 4.65% on detecting crystal violet, respectively. Moreover, the monolayer achieves efficient detection of thiram in apple juice, biphenyl-4-thiol, 4-mercaptobenzoic, melamine, and a mixed solution of four different molecules, showing great promise in practical detection.

19.
J Environ Manage ; 360: 121100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744205

ABSTRACT

Removal of heavy metals using the electrokinetic (EK) remediation technology is restricted by soils containing a fraction of clay particles above 12%. Furthermore, it is also affected by hydroxide precipitation (focusing phenomenon) close to the cathode. A modified EK reactor containing a permeable reactive barrier (PRB) was proposed herein where the enzyme-induced carbonate precipitation (EICP) treatment was incorporated into the PRB. Despite that, NH4+-N pollution induced by the urea hydrolysis resulting from the EICP treatment causes serious threats to surrounding environments and human health. There were four types of tests applied to the present work, including CP, TS1, TS2, and TS3 tests. CP test neglected the bio-PRB, while TS1 test considered the bio-PRB. TS2 test based on TS1 test tackled NH4+-N pollution using the struvite precipitation technology. TS3 test based on TS2 test applied EDDS to enhance the removal of Cu and Pb. In CP test, the removal efficiency applied to Cu and Pb removals was as low as approximately 10%, presumably due to the focusing phenomenon. The removal efficiency was elevated to approximately 24% when the bio-PRB and the electrolyte reservoir were involved in TS1 test. TS2 test indicated that the rate of struvite precipitation was 40 times faster than the ureolysis rate, meaning that the struvite precipitate had sequestered NH4+ before it started threatening surrounding environments. The chelation between Cu2+ and EDDS took place when EDDS played a part in TS3 test. It made Cu2+ negatively surface charged by transforming Cu2+ into EDDSCu2-. The chelation caused those left in S4 and S4 to migrate toward the bio-PRB, whereas it also caused those left in S1 and S2 to migrate toward the anode. Due to this reason, the fraction of Cu2+ removed by the bio-PRB and the electrolyte reservoir is raised to 32% and 26% respectively, and the fraction of remaining Cu was reduced to 41%. Also, the removal efficiency applied to Pb removal was raised to 50%. Results demonstrate the potential of struvite and EDDS-assisted EK-PRB technology as a cleanup method for Cu- and Pb-contaminated loess.


Subject(s)
Copper , Lead , Struvite , Copper/chemistry , Lead/chemistry , Struvite/chemistry , Soil/chemistry , Succinates/chemistry , Soil Pollutants/chemistry
20.
Clin Transl Allergy ; 14(5): e12357, 2024 May.
Article in English | MEDLINE | ID: mdl-38730525

ABSTRACT

BACKGROUND: Asthma is the most common chronic disease among children and poses a significant threat to their health. This study aims to assess the relationship between various plasma proteins and childhood asthma, thereby identifying potential therapeutic targets. METHODS: Based on publicly available genome-wide association study summary statistics, we employed a two-sample Mendelian randomization (MR) approach to elucidate the causal relationship between plasma proteins and asthma. Mediation analysis was then conducted to evaluate the indirect influence of plasma proteins on childhood asthma mediated through risk factors. Comprehensive analysis was also conducted to explore the association between plasma proteins and various phenotypes using the UK Biobank dataset. RESULTS: MR analysis uncovered a causal relationship between 10 plasma proteins and childhood asthma. Elevated levels of seven proteins (TLR4, UBP25, CBR1, Rac GTPase-activating protein 1 [RGAP1], IL-21, MICB, and PDE4D) and decreased levels of three proteins (GSTO1, LIRB4 and PIGF) were associated with an increased risk of childhood asthma. Our findings further validated the connections between reported risk factors (body mass index, mood swings, hay fever or allergic rhinitis, and eczema or dermatitis) and childhood asthma. Mediation analysis revealed the influence of proteins on childhood asthma outcomes through risk factors. Furthermore, the MR analysis identified 73 plasma proteins that exhibited causal associations with at least one risk factor for childhood asthma. Among them, RGAP1 mediates a significant proportion (25.10%) of the risk of childhood asthma through eczema or dermatitis. Finally, a phenotype-wide association study based on these 10 proteins and 1403 diseases provided novel associations between these biomarkers and multiple phenotypes. CONCLUSION: Our study comprehensively investigated the causal relationship between plasma proteins and childhood asthma, providing novel insights into potential therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...