Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.314
Filter
1.
J Med Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959216

ABSTRACT

The P2Y14 receptor has been proven to be a potential target for IBD. Herein, we designed and synthesized a series of 4-amide-thiophene-2-carboxyl derivatives as novel potent P2Y14 receptor antagonists based on the scaffold hopping strategy. The optimized compound 39 (5-((5-fluoropyridin-2-yl)oxy)-4-(4-methylbenzamido)thiophene-2-carboxylic acid) exhibited subnanomolar antagonistic activity (IC50: 0.40 nM). Moreover, compound 39 demonstrated notably improved solubility, liver microsomal stability, and oral bioavailability. Fluorescent ligand binding assay confirmed that 39 has the binding ability to the P2Y14 receptor, and molecular dynamics (MD) simulations revealed the formation of a unique intramolecular hydrogen bond (IMHB) in the binding conformation. In the experimental colitis mouse model, compound 39 showed a remarkable anti-IBD effect even at low doses. Compound 39, with a potent anti-IBD effect and favorable druggability, can be a promising candidate for further research. In addition, this work lays a strong foundation for the development of P2Y14 receptor antagonists and the therapeutic strategy for IBD.

2.
J Am Chem Soc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959221

ABSTRACT

The magnetoelectric material has attracted multidisciplinary interest in the past decade for its potential to accommodate various functions. Especially, the external electric field can drive the quantum behaviors of such materials via the spin-electric coupling effect, with the advantages of high spatial resolution and low energy cost. In this work, the spin-electric coupling effect of Mn2+-doped ferroelectric organic-inorganic hybrid perovskite [(CH3)3NCH2Cl]CdCl3 with a large piezoelectric effect was investigated. The electric field manipulation efficiency for the allowed transitions was determined by the pulsed electron paramagnetic resonance. The orientation-included Hamiltonian of the spin-electric coupling effect was obtained via simulating the angle-dependent electric field modulated continuous-wave electron paramagnetic resonance. The results demonstrate that the applied electric field affects not only the principal values of the zero-field splitting tensor but also its principal axis directions. This work proposes and exemplifies a route to understand the spin-electric coupling effect originating from the crystal field imposed on a spin ion being modified by the applied electric field, which may guide the rational screening and designing of hybrid perovskite ferroelectrics that satisfy the efficiency requirement of electric field manipulation of spins in quantum information applications.

3.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959864

ABSTRACT

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Secretion , Insulin , Islets of Langerhans , Proteomics , Humans , Diabetes Mellitus, Type 2/metabolism , Male , Female , Insulin/metabolism , Islets of Langerhans/metabolism , Middle Aged , Nutrients/metabolism , Adult , Glucose/metabolism , Aged , Fatty Acids/metabolism
4.
Nature ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961294

ABSTRACT

Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.

6.
J Affect Disord ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971194

ABSTRACT

BACKGROUND: Shift work is associated with susceptibility to several neuropsychiatric disorders. This study aims to investigate the effect of shift work on the incidence of neuropsychiatric disorders, and highlighting how individual variability may influence the association. METHODS: UK Biobank participants with employment information were included. Cox survival was conducted in main and subgroup analyses. Correlation analyses explored the impact of shift work on brain structures, and mediation analyses were performed to elucidate the shared underlying mechanisms. Shift work tolerance was evaluated through survival analyses contrasting the risks associated with five neuropsychiatric disorders in shift versus non-shift workers across different demographic or occupational strata. RESULTS: The analysis encompassed 254,646 participants. Shift work was associated with higher risk of dementia (HR 1.29, 95 % CI 1.10-1.52), anxiety (1.08, 1.01-1.15), depression (1.29, 1.22-1.36), and sleep disorders (1.18, 1.09-1.28), but not stroke (p = 0.20). Shift work was correlated with decreasing volume of various brain regions, particularly in thalamus, lateral orbitofrontal, and middle temporal. Mediation analysis revealed that increased immune response and glucose levels are common pathways linking shift work to these disorders. We observed diversity in shift work tolerance across different individual characteristics, among which socioeconomic status and length of working hours were the most essential. LIMITATIONS: Self-reported employment information may cause misclassification and recall bias. And since we focused on the middle-aged population, the conclusions may not be representative of younger or older populations. CONCLUSIONS: Our findings indicated the need to monitor shift worker health and provide personalized management to help adapt to shift work.

7.
Drug Des Devel Ther ; 18: 2693-2712, 2024.
Article in English | MEDLINE | ID: mdl-38974121

ABSTRACT

Background: Chronic kidney disease (CKD) is a significant worldwide health concern that leads to high mortality rates. The bioactive substance costunolide (CTD) has demonstrated several pharmacological effects and holds promise as a CKD treatment. This study aims to investigate the impact of CTD on CKD and delve into its mechanisms of action. Methods: Unilateral ureteral obstruction (UUO) methods and renal fibrosis mice models were created. Various concentrations of CTD were injected into UUO mice models to investigate the therapeutic effects of CTD on renal fibrosis of mice. Then, renal morphology, pathological changes, and the expression of genes related to fibrosis, inflammation and ferroptosis were analysed. RNA sequencing was utilized to identify the main biological processes and pathways involved in renal injury. Finally, both overexpression and inhibition of IKKß were studied to examine their respective effects on fibrosis and inflammation in both in vitro and in vivo models. Results: CTD treatment was found to significantly alleviate fibrosis, inflammation and ferroptosis in UUO-induced renal fibrosis mice models. The results of RNA sequencing suggested that the IKKß acted as key regulatory factor in renal injury and the expression of IKKß was increased in vitro and in vivo renal fibrosis model. Functionally, down-regulated IKKß expression inhibits ferroptosis, inflammatory cytokine production and collagen deposition. Conversely, IKKß overexpression exacerbates progressive renal fibrosis. Mechanistically, CTD alleviated renal fibrosis and inflammation by inhibiting the expression of IKKß and attenuating IKKß/NF-κB pathway. Conclusion: This study demonstrates that CTD could mitigate renal fibrosis, ferroptosis and inflammation in CKD by modulating the IKKß/NF-κB pathway, which indicates targeting IKKß has an enormous potential for treating CKD.


Subject(s)
I-kappa B Kinase , Mice, Inbred C57BL , NF-kappa B , Renal Insufficiency, Chronic , Sesquiterpenes , Animals , I-kappa B Kinase/metabolism , I-kappa B Kinase/antagonists & inhibitors , Mice , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Sesquiterpenes/pharmacology , Male , Disease Models, Animal , Fibrosis/drug therapy , Humans , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Signal Transduction/drug effects , Dose-Response Relationship, Drug , Inflammation/drug therapy , Inflammation/metabolism
8.
Cell Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849501

ABSTRACT

Physiologically, the atria contract first, followed by the ventricles, which is the prerequisite for normal blood circulation. The above phenomenon of atrioventricular sequential contraction results from the characteristically slow conduction of electrical excitation of the atrioventricular node (AVN) between the atria and the ventricles. However, it is not clear what controls the conduction of electrical excitation within AVNs. Here, we find that AVN pacemaker cells (AVNPCs) possess an intact intrinsic GABAergic system, which plays a key role in electrical conduction from the atria to the ventricles. First, along with the discovery of abundant GABA-containing vesicles under the surface membranes of AVNPCs, key elements of the GABAergic system, including GABA metabolic enzymes, GABA receptors, and GABA transporters, were identified in AVNPCs. Second, GABA synchronously elicited GABA-gated currents in AVNPCs, which significantly weakened the excitability of AVNPCs. Third, the key molecular elements of the GABAergic system markedly modulated the conductivity of electrical excitation in the AVN. Fourth, GABAA receptor deficiency in AVNPCs accelerated atrioventricular conduction, which impaired the AVN's protective potential against rapid ventricular frequency responses, increased susceptibility to lethal ventricular arrhythmias, and decreased the cardiac contractile function. Finally, interventions targeting the GABAergic system effectively prevented the occurrence and development of atrioventricular block. In summary, the endogenous GABAergic system in AVNPCs determines the slow conduction of electrical excitation within AVNs, thereby ensuring sequential atrioventricular contraction. The endogenous GABAergic system shows promise as a novel intervention target for cardiac arrhythmias.

9.
Article in English | MEDLINE | ID: mdl-38871614

ABSTRACT

For 29 parent strains, recognized by pulsed-field gel electrophoresis, the MICs multiplied significantly in the ciprofloxacin group than levofloxacin group, following the first and third induction cycle. Ser83Arg in GyrA was the most common site of mutations. No mutation in ParC nor ParE was identified in the selected mutants.

10.
Org Lett ; 26(23): 4938-4944, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38838351

ABSTRACT

The first enantioselective vinylogous Mannich reaction is developed using 2-methoxyfuran under chiral spirophosphoric acid catalysis. The strategy involves 4-isoxazoline derivatives as cyclic ketimine surrogates and provides γ-butenolide scaffolds (up to 97% ee and >20:1 dr). The mechanistic investigations suggest that an in situ generated water molecule plays a crucial role in delivering γ-butenolide, while the use of molecular sieves delivers aza-Friedel-Crafts products. The synthetic utility of γ-butenolide is shown toward obtaining piperidone skeleton via a lactone-lactam rearrangement.

11.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872164

ABSTRACT

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Subject(s)
Arthritis, Gouty , Gastrointestinal Microbiome , Osteoarthritis , Virome , Humans , Arthritis, Gouty/virology , Arthritis, Gouty/microbiology , Male , Osteoarthritis/virology , Osteoarthritis/microbiology , Female , Middle Aged , Case-Control Studies , Aged , Metagenomics , Feces/virology , Feces/microbiology
12.
Eur Stroke J ; : 23969873241258058, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859581

ABSTRACT

RATIONALE: To date, the benefit of intravenous thrombolysis for acute ischemic stroke (AIS) patients without advanced neuroimaging selection is confined to within 4.5 h of onset. Our phase II EXIT-BT (Extending the tIme window of Thrombolysis by ButylphThalide up to 6 h after onset) trial suggested the safety, feasibility, and potential benefit of intravenous tenecteplase (TNK) in AIS between 4.5 and 6 h of onset. The EXIT-BT2 trial is a pivotal study undertaken to confirm or refute this signal. AIM: To investigate the efficacy and safety of TNK for AIS between 4.5 and 6 h of onset with or without endovascular treatment. SAMPLE SIZE ESTIMATES: A maximum of 1440 patients are required to test the superiority hypothesis with 80% power according to a two-sided 0.05 level of significance, stratified by age, sex, history of diabetes, location of vessel occlusion, baseline National Institute of Health stroke scale score, stroke etiology, and plan for endovascular treatment. DESIGN: EXIT-BT2 is a prospective, randomized, open-label, blinded assessment of endpoint (PROBE), and multi-center study. Eligible AIS patients between 4.5 and 6 h of onset are randomly assigned 1:1 into a TNK group or control group. The TNK group will receive TNK (0.25 mg/kg, a single bolus over 5-10 s, maximum 25 mg). The control group will receive standard medical care in compliance with national guidelines for acute ischemic stroke. Both groups will receive standard stroke care from randomization to 90 days after stroke onset according to national guidelines. OUTCOME: The primary efficacy endpoint is excellent functional outcome, defined as a modified Rankin Scale score 0-1 at 90 days after randomization, while the primary safety endpoint is symptomatic intracerebral hemorrhage, defined as National Institutes of Health Stroke Scale score increase ⩾4 caused by intracranial hemorrhage within 24 (-6/+12) h after randomization. CONCLUSIONS: The results of EXIT-BT2 may determine whether intravenous TNK has a favorable risk/benefit profile in AIS between 4.5 and 6 h of onset.

13.
NPJ Sci Food ; 8(1): 33, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890318

ABSTRACT

Fermenting Chinese medicinal herbs could enhance their bioactivities. We hypothesized probiotic-fermented gastrodia elata Blume (GE) with better potential to alleviate insomnia than that of unfermented, thus the changes in chemical composition and the insomnia-alleviating effects and mechanisms of fermented GE on pentylenetetrazole (PTZ)-induced insomnia zebrafish were explored via high-performance liquid chromatography (HPLC) and mass spectroscopy-coupled HPLC (HPLC-MS), phenotypic, transcriptomic, and metabolomics analysis. The results demonstrated that probiotic fermented GE performed better than unfermented GE in increasing the content of chemical composition, reducing the displacement, average speed, and number of apoptotic cells in zebrafish with insomnia. Metabolomic investigation showed that the anti-insomnia effect was related to regulating the pathways of actin cytoskeleton and neuroactive ligand-receptor interactions. Transcriptomic and reverse transcription qPCR (RT-qPCR) analysis revealed that secondary fermentation liquid (SFL) significantly modulated the expression levels of neurod1, msh2, msh3, recql4, ercc5, rad5lc, and rev3l, which are mainly involved in neuron differentiation and DNA repair. Collectively, as a functional food, fermented GE possessed potential for insomnia alleviation.

14.
Obesity (Silver Spring) ; 32(7): 1290-1301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38932711

ABSTRACT

OBJECTIVE: The objective of this study was to assess purchasing, intake, and weight after discounting fruits and vegetables (F&V) and noncaloric beverages in New York City supermarkets. METHODS: A 16-week randomized controlled trial was conducted with a 4-week baseline, an 8-week intervention with 50% discounts on F&V and noncaloric beverages, and a 4-week follow-up. Purchasing was tracked via loyalty cards, and intake was tracked via 24-h dietary recalls. Weights were measured at five in-person visits. RESULTS: Data from 67 participants were analyzed (38 in the experimental group; 29 in the control group). F&V and noncaloric beverage weekly purchasing was greater in the experimental than the control group (mean difference [SD], $4.64 [$1.44], p < 0.0001; $0.53 [$0.39], p = 0.008) during intervention, with F&V purchasing remaining greater in the experimental versus control group during follow-up (p = 0.005). F&V intake was greater for the experimental than the control group during intervention (142 [105] g/day; p = 0.009) and follow-up (p = 0.001). Although no difference in noncaloric beverage consumption was observed between groups, there was lower alcohol intake in the experimental than the control group during follow-up (-85.8 [60.2] g/day; p = 0.004). The experimental group lost weight compared with the control group (-1.33 [0.92] kg; p = 0.006 intervention and p = 0.106 follow-up). No differences in nutrient composition or high energy-dense product consumption were found. CONCLUSIONS: A 50% discount on F&V and noncaloric beverages promoted increased purchasing and intake of F&V and induced weight loss.


Subject(s)
Beverages , Fruit , Supermarkets , Vegetables , Humans , New York City , Female , Male , Adult , Beverages/economics , Middle Aged , Body Weight , Consumer Behavior/economics , Consumer Behavior/statistics & numerical data , Commerce , Energy Intake , Diet/economics
15.
Sci Rep ; 14(1): 10833, 2024 05 12.
Article in English | MEDLINE | ID: mdl-38734835

ABSTRACT

Our aim was to develop a machine learning-based predictor for early mortality and severe intraventricular hemorrhage (IVH) in very-low birth weight (VLBW) preterm infants in Taiwan. We collected retrospective data from VLBW infants, dividing them into two cohorts: one for model development and internal validation (Cohort 1, 2016-2021), and another for external validation (Cohort 2, 2022). Primary outcomes included early mortality, severe IVH, and early poor outcomes (a combination of both). Data preprocessing involved 23 variables, with the top four predictors identified as gestational age, birth body weight, 5-min Apgar score, and endotracheal tube ventilation. Six machine learning algorithms were employed. Among 7471 infants analyzed, the selected predictors consistently performed well across all outcomes. Logistic regression and neural network models showed the highest predictive performance (AUC 0.81-0.90 in both internal and external validation) and were well-calibrated, confirmed by calibration plots and the lowest two mean Brier scores (0.0685 and 0.0691). We developed a robust machine learning-based outcome predictor using only four accessible variables, offering valuable prognostic information for parents and aiding healthcare providers in decision-making.


Subject(s)
Infant, Premature , Infant, Very Low Birth Weight , Machine Learning , Humans , Infant, Newborn , Female , Male , Retrospective Studies , Taiwan/epidemiology , Infant , Prognosis , Cerebral Hemorrhage/mortality , Gestational Age , Cerebral Intraventricular Hemorrhage/mortality , Cerebral Intraventricular Hemorrhage/epidemiology , Infant Mortality , Birth Weight , Infant, Premature, Diseases/mortality
16.
Brain Behav Immun ; 119: 995-1007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710337

ABSTRACT

BACKGROUND: The study examined how plasma proteome indicators may explain the link between poor cardiovascular health (CVH) and dementia risk. METHODS: The present study involved 28,974 UK Biobank participants aged 50-74y at baseline (2006-2010) who were followed-up for ≤ 15 y for incidence of dementia. CVH was calculated using Life's Essential 8 (LE8) total scores. The scores were standardized and reverse coded to reflect poor CVH (LE8z_rev). OLINK proteomics was available on this sample (k = 1,463 plasma proteins). The study primarily tested the mediating effects of the plasma proteome in LE8z_rev-dementia effect. The total effect was decomposed into "mediation only" or pure indirect effect (PIE), "interaction only" or interaction referent (INTREF), "neither mediation nor interaction" or controlled direct effect (CDE), and "both mediation and interaction" or mediated interaction (INTMED). RESULTS: The study found poorer CVH assessed by LE8z_rev increased the risk of all-cause dementia by 11 % [per 1 SD, hazard ratio, (HR) = 1.11, 95 % CI: 1.03-1.20, p = 0.005). The study identified 11 plasma proteins with strong mediating effects, with GDF15 having the strongest association with dementia risk (per 1 SD, HR = 1.24, 95 % CI: 1.16, 1.33, P < 0.001 when LE8z_rev is set at its mean value) and the largest proportion mediated combining PIE and INTMED (62.6 %; 48 % of TE is PIE), followed by adrenomedullin or ADM. A first principal component with 10 top mediators (TNFRSF1A, GDF15, FSTL3, COL6A3, PLAUR, ADM, GFRAL, ACVRL1, TNFRSF6B, TGFA) mediated 53.6 % of the LE8z_rev-dementia effect. Using all the significant PIE (k = 526) proteins, we used OLINK Insight pathway analysis to identify key pathways, which revealed the involvement of the immune system, signal transduction, metabolism, disease, protein metabolism, hemostasis, membrane trafficking, extracellular matrix organization, developmental biology, and gene expression among others. STRING analysis revealed that five top consistent proteomic mediators were represented in two larger clusters reflecting numerous interconnected biological gene ontology pathways, most notably cytokine-mediated signaling pathway for GDF15 cluster (GO:0019221) and regulation of peptidyl-tyrosine phosphorylation for the ADM cluster (GO:0050730). CONCLUSION: Dementia is linked to poor CVH mediated by GDF15 and ADM among several key proteomic markers which collectively explained âˆ¼ 54 % of the total effect.


Subject(s)
Biological Specimen Banks , Biomarkers , Cardiovascular Diseases , Dementia , Proteomics , Humans , Male , Aged , Female , United Kingdom/epidemiology , Dementia/blood , Dementia/epidemiology , Middle Aged , Proteomics/methods , Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Proteome/metabolism , Incidence , Risk Factors , Blood Proteins/metabolism , Blood Proteins/analysis , UK Biobank
17.
Chem Rev ; 124(11): 7465-7530, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38753805

ABSTRACT

Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.


Subject(s)
Genetic Code , Proteins , Protein Biosynthesis , Protein Engineering/methods , Proteins/genetics , Proteins/metabolism , Proteins/chemistry
18.
Respir Res ; 25(1): 209, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750527

ABSTRACT

BACKGROUND: Limited research has investigated the relationship between small airway dysfunction (SAD) and static lung hyperinflation (SLH) in patients with post-acute sequelae of COVID-19 (PASC) especially dyspnea and fatigue. METHODS: 64 patients with PASC were enrolled between July 2020 and December 2022 in a prospective observational cohort. Pulmonary function tests, impulse oscillometry (IOS), and symptom questionnaires were performed two, five and eight months after acute infection. Multivariable logistic regression models were used to test the association between SLH and patient-reported outcomes. RESULTS: SLH prevalence was 53.1% (34/64), irrespective of COVID-19 severity. IOS parameters and circulating CD4/CD8 T-cell ratio were significantly correlated with residual volume to total lung capacity ratio (RV/TLC). Serum CD8 + T cell count was negatively correlated with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) with statistical significance. Of the patients who had SLH at baseline, 57% continued to have persistent SLH after eight months of recovery, with these patients tending to be older and having dyspnea and fatigue. Post-COVID dyspnea was significantly associated with SLH and IOS parameters R5-R20, and AX with adjusted odds ratios 12.4, 12.8 and 7.6 respectively. SLH was also significantly associated with fatigue. CONCLUSION: SAD and a decreased serum CD4/CD8 ratio were associated with SLH in patients with PASC. SLH may persist after recovery from infection in a substantial proportion of patients. SAD and dysregulated T-cell immune response correlated with SLH may contribute to the development of dyspnea and fatigue in patients with PASC.


Subject(s)
COVID-19 , Lung , Post-Acute COVID-19 Syndrome , Respiratory Function Tests , Humans , Male , Female , Middle Aged , COVID-19/physiopathology , COVID-19/complications , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/immunology , Prospective Studies , Lung/physiopathology , Respiratory Function Tests/methods , Aged , Adult , Recovery of Function , Time Factors , Dyspnea/physiopathology , Dyspnea/epidemiology , Dyspnea/diagnosis , Forced Expiratory Volume/physiology
20.
Fitoterapia ; 176: 106007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744384

ABSTRACT

Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.


Subject(s)
Aspergillus , Immunosuppressive Agents , Periplaneta , Animals , Mice , Molecular Structure , Aspergillus/chemistry , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/isolation & purification , Periplaneta/microbiology , CD4-Positive T-Lymphocytes , Endophytes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Flavonoids/pharmacology , Flavonoids/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Signal Transduction , Mice, Inbred C57BL , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...