Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
J Am Chem Soc ; 146(22): 15085-15095, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776232

ABSTRACT

The spleen emerges as a pivotal target for mRNA delivery, prompting a continual quest for specialized and efficient lipid nanoparticles (LNPs) designed to enhance spleen-selective transfection efficiency. Here we report imidazole-containing ionizable lipids (IMILs) that demonstrate a pronounced preference for mRNA delivery into the spleen with exceptional transfection efficiency. We optimized IMIL structures by constructing and screening a multidimensional IMIL library containing multiple heads, tails, and linkers to perform a structure-activity correlation analysis. Following high-throughput in vivo screening, we identified A3B7C2 as a top-performing IMIL in spleen-specific mRNA delivery via the formulated LNPs, achieving a remarkable 98% proportion of splenic transfection. Moreover, A3B7C2-based LNPs are particularly potent in splenic dendritic cell transfection. Comparative analyses revealed that A3B7C2-based LNPs achieved a notable 2.8-fold and 12.9-fold increase in splenic mRNA transfection compared to SM102 and DLin-MC3-DMA lipid formulations, respectively. Additionally, our approach yielded an 18.3-fold enhancement in splenic mRNA expression compared to the SORT method without introducing additional anionic lipids. Collectively, these IMILs highlight promising avenues for further research in spleen-selective mRNA delivery. This work offers valuable insights for the swift discovery and rational design of ionizable lipid candidates tailored for spleen-selective transfection, thereby facilitating the application of mRNA therapeutics in spleen-related interventions.


Subject(s)
Imidazoles , Lipids , RNA, Messenger , Spleen , Spleen/metabolism , Imidazoles/chemistry , Lipids/chemistry , Lipids/chemical synthesis , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , Animals , Mice , Transfection/methods , Nanoparticles/chemistry , Molecular Structure
2.
Adv Mater ; : e2403033, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648668

ABSTRACT

Carbonaceous materials are regarded as one of the most promising anodes for potassium-ion batteries (PIBs), but their rate capabilities are largely limited by the slow solid-state potassium diffusion kinetics inside anode and sluggish interfacial potassium ion transfer process. Herein, high-rate and high-capacity PIBs are demonstrated by facile topological defect-regulation of the microstructure of carbon anodes. The carbon lattice of the as-obtained porous carbon nanosheets (CNSs) with abundant topological defects (TDPCNSs) holds relatively high potassium adsorption energy yet low potassium migration barrier, thereby enabling efficient storage and diffusion of potassium inside graphitic layers. Moreover, the topological defects can induce preferential decomposition of anions, leading to the formation of high potassium ion conductive solid electrolyte interphase (SEI) film with decreased potassium ion de-solvation and transfer barrier. Additionally, the dominant sp2-hybridized carbon conjugated skeleton of TDPCNSs enables high electrical conductivity (39.4 S cm-1) and relatively low potassium storage potential. As a result, the as-constructed TDPCNSs anode demonstrates high potassium storage capacity (504 mA h g-1 at 0.1 A g-1), remarkable rate capability (118 mA h g-1 at 40 A g-1), as well as long-term cycling stability.

3.
Front Cell Infect Microbiol ; 14: 1356353, 2024.
Article in English | MEDLINE | ID: mdl-38601741

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to almost all antibiotics. Eravacycline, a newer treatment option, has the potential to treat CRAB infections, however, the mechanism by which CRAB isolates develop resistance to eravacycline has yet to be clarified. This study sought to investigate the features and mechanisms of eravacycline heteroresistance among CRAB clinical isolates. A total of 287 isolates were collected in China from 2020 to 2022. The minimum inhibitory concentration (MIC) of eravacycline and other clinically available agents against A. baumannii were determined using broth microdilution. The frequency of eravacycline heteroresistance was determined by population analysis profiling (PAP). Mutations and expression levels of resistance genes in heteroresistant isolates were determined by polymerase chain reaction (PCR) and quantitative real-time PCR (qRT-PCR), respectively. Antisense RNA silencing was used to validate the function of eravacycline heteroresistant candidate genes. Twenty-five eravacycline heteroresistant isolates (17.36%) were detected among 144 CRAB isolates with eravacycline MIC values ≤4 mg/L while no eravacycline heteroresistant strains were detected in carbapenem-susceptible A. baumannii (CSAB) isolates. All eravacycline heteroresistant strains contained OXA-23 carbapenemase and the predominant multilocus sequence typing (MLST) was ST208 (72%). Cross-resistance was observed between eravacycline, tigecycline, and levofloxacin in the resistant subpopulations. The addition of efflux pump inhibitors significantly reduced the eravacycline MIC in resistant subpopulations and weakened the formation of eravacycline heteroresistance in CRAB isolates. The expression levels of adeABC and adeRS were significantly higher in resistant subpopulations than in eravacycline heteroresistant parental strains (P < 0.05). An ISAba1 insertion in the adeS gene was identified in 40% (10/25) of the resistant subpopulations. Decreasing the expression of adeABC or adeRS by antisense RNA silencing significantly inhibited eravacycline heteroresistance. In conclusion, this study identified the emergence of eravacycline heteroresistance in CRAB isolates in China, which is associated with high expression of AdeABC and AdeRS.


Subject(s)
Acinetobacter baumannii , Tetracyclines , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Antisense , China/epidemiology , Microbial Sensitivity Tests
4.
Cerebellum ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010570

ABSTRACT

Inherited cerebellar ataxias (CA) are heterogeneous progressive neurological conditions associated with significant functional limitations. This study aimed to assess the implications of inherited CA on patients' self-reported quality of life (QoL) and impairments in work and activities. 129 individuals with ataxia responded to a survey focused on QoL. Health-related QoL was measured using the RAND 36-Item Short Form Survey. An adaptation of the validated Work Productivity and Activity Impairment questionnaire was used to assess the effect of health on work productivity and ability to perform activities over the past week. Nine percent of respondents were currently employed. Individuals with inherited ataxia experienced significant activity impairment, and 75% required professional or informal care. Health-related quality of life (HRQoL) was significantly worse in all areas for the individuals with inherited ataxia compared with Irish population normative values. Participants with Friedreich's ataxia (n = 56) demonstrated worse physical functioning then those with undetermined ataxia (n = 55). Female gender, younger age at symptom onset, current employment, retirement due to age or ataxia, and living in a long-term care facility were associated with higher sub-scores in different domains of HRQoL, while disease duration correlated with worse physical functioning sub-scores. This study is the first cross-sectional study on HRQoL in patients with inherited ataxia in Ireland. It highlights high rates of unemployment, difficulty with daily activities and physical functioning limitations, which is worse than comparative international studies. Given the limited therapeutic options currently available, optimising HRQoL is an important aspect of managing ataxia.

5.
J Craniofac Surg ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018966

ABSTRACT

Three-dimensional (3D) planning of orthognathic surgery (OGS) improves the treatment of facial asymmetry and malocclusion, but no consensus exists among clinicians regarding technical details. This study verified the consistency of authors' workflow and strategies between 3D planning and surgical execution for facial asymmetry. This retrospective study recruited consecutive patients (n=54) with nonsyndromic facial asymmetry associated with malocclusion. The stepwise workflow included orthodontic treatment, 3D imaging-based evaluation, planning, and transferring the virtual of single-splint 2-jaw OGS to actual surgery in all patients. Seven landmark-based measurements were selected for postoperative assessment of facial symmetry. Fifty patients had no anesthetic/surgical-related episode and procedure-related complications. Others experienced wound infection (n=1), transient TMJ discomfort (n=1), and facial numbness (n=3). Two cases had minor residual asymmetry (cheek and chin, respectively), but did not request revisionary bone or soft tissue surgery. Comparisons between the planned and postoperative 3D images with quantitative measurement revealed acceptable outcome data. The results showed a significant increase in facial symmetry at 7 landmark-based postoperative measurements for both male and female. This 3D-assisted pathway of OGS permitted achievement of consistent satisfactory results in managing facial asymmetry, with low rate of complications and secondary management.

6.
Cell Chem Biol ; 30(7): 709-725.e6, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37354905

ABSTRACT

Metastatic colorectal cancer (mCRC) is characterized by poorer prognosis of patients and limited therapeutic approach, partly due to the lack of effective target. Using mouse models and tumor organoids, this study reported a tripartite motif 21 (TRIM21) protein, exerting potential inhibitory effects on the invasion and metastasis of CRC. Mechanistically, TRIM21 directly interacted with and ubiquitinated MST2 at lysine 473 (K473) via K63-linkage. This ubiquitination enabled the formation of MST2 homodimer and enhanced its kinase activity, ultimately resulting in the functional inactivation of yes-associated protein (YAP) and inhibition of an epithelial-mesenchymal transition (EMT) feature. We identified that vilazodone, an antidepressant, directly bound to TRIM21 to exert effective anti-metastatic action both in vitro and in vivo. Collectively, these findings revealed a previously unrecognized interplay between TRIM21 and the Hippo-YAP signaling. These results suggested that vilazodone could be repositioned as an anti-tumor drug to inhibit CRC metastasis by targeting TRIM21.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Animals , Mice , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Phosphorylation , Ubiquitination , Vilazodone Hydrochloride/pharmacology
7.
Macromol Rapid Commun ; 44(12): e2300024, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37078381

ABSTRACT

Natural spider silks with striking performances achieve extensive investigations. Nonetheless, a lack of consensus over the mechanism of the natural spinning hinders the development of artificial spinning methods where the regenerated spider silks generally show poor performances compared with the natural fibers. As is known, the Plateau-Rayleigh instability tends to break solution column into droplets and is considered a main challenge during fiber-spinning. Here in this study, by harnessing the viscoelastic properties of the regenerated spidroin dope solution via organic salt-zinc acetate (ZA), this outcome can be avoided, and dry-spinning of long and mechanically robust regenerated spider silk ribbons can be successfully realized. The as-obtained dry-spun spider silk ribbons show an enhanced modulus up to 14 ± 4 GPa and a toughness of ≈51 ± 9 MJ m-3 after the post-stretching treatment, which is even better than that of the pristine spider silk fibers. This facile and flexible strategy enriches the spinning methodologies which bypass the bottleneck of precisely mimicking the complex natural environment of the glands in spiders, shining a light to the spider-silk-based textile industrial applications.


Subject(s)
Fibroins , Spiders , Animals , Silk
8.
Br J Pharmacol ; 180(16): 2085-2101, 2023 08.
Article in English | MEDLINE | ID: mdl-36942453

ABSTRACT

BACKGROUND AND PURPOSE: Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH: Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS: Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS: Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.


Subject(s)
PPAR delta , Plaque, Atherosclerotic , Animals , Humans , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Inflammasomes/metabolism , Matrix Metalloproteinase 2/metabolism , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phenotype , Plaque, Atherosclerotic/metabolism , PPAR delta/genetics
9.
Journal of Chinese Physician ; (12): 252-256, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-992293

ABSTRACT

Objective:To observe the effect of general anesthesia combined with serratus anterior plane block (SAPB) on the quality of life and postoperative pain of patients undergoing breast cancer surgery.Methods:The clinical data of 80 patients with breast cancer undergoing elective modified radical mastectomy admitted to the Affiliated Hospital of Guilin Medical College from January 2020 to March 2021 were retrospectively analyzed. According to different anesthesia methods, they were divided into control group and observation group, with 40 cases in each group. The control group received simple general anesthesia, while the observation group received general anesthesia combined with SAPB. The degree of postoperative pain in the two groups at 3, 6, 12 and 24 h after surgery was evaluated with the Numerical Rating Scale (NRS) score, and the postoperative recovery at 24 h after surgery and quality of life at 3 h and 6 months after surgery were evaluated with the Quality of Recovery-40 (QoR-40) score and the Short Form of Health Survey (SF-36). The serum levels of pain related cytokines[neuropeptide Y (NPY), prostaglandin E2 (PGE2), and 5-hydroxytryptamine (5-HT) ] in the two groups were compared. The complications of the two groups were recorded.Results:The NRS score in the observation group at 6 h and 12 h after operation were lower than those in the control group (all P<0.05). The QoR-40 score at 24 h after operation and SF-36 score at 6 months after operation in the observation group were higher than those in the control group (all P<0.05). There was no significant difference in the incidence of postoperative complications between the two groups ( P>0.05). The NPY, PGE2 and 5-HT levels of patients in the observation group were lower than those in the control group at 24 h after operation (all P<0.05). Conclusions:The use of general anesthesia combined with SAPB in modified radical mastectomy for breast cancer can alleviate postoperative pain and improve long-term quality of life, which may be related to the reduction of pain related cytokine secretion.

10.
Chinese Pharmacological Bulletin ; (12): 1417-1421, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013953

ABSTRACT

Methamphetamine abuse and HIV infection are extremely serious public health and social problems facing the world today. Methamphetamine and HIV-1 Tat protein can induce neurotoxicity in an individual and synergistic way, and neuroinflammation is one of the most important mechanisms for ca-using neurotoxicity. Neuroinflammation can be mediated by glial cells, cytokines, NLRP3 inflammasomes, etc. This paper reviews the research progress of neuroinflammation induced by methamphetamine and HIV-1 Tat protein in recent years, with the aim of providing reference and basis for further exploration of the mechanisms of neuroinflammation caused by them and effective drug intervention targets in the future.

11.
Chem Commun (Camb) ; 58(74): 10329-10332, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36052738

ABSTRACT

Amorphous calcium phosphate (ACP) is an intriguing mineral phase of calcium phosphate in its own right, in addition to its relevance in biomineralization. We hereby demonstrate that ACPs prepared by different synthetic routes such as the crosslinking of inorganic oligomers and polymer-induced liquid precursors have distinctive relative compositions of orthophosphate and hydrogen phosphate, and the extent of their hydrogen bonding with water. For all the ACPs or ACP-derived materials studied in this work, the species of hydrogen phosphate is the most important structural element. Depending on the synthetic pathways, orthophosphate and water, as well as their associated hydrogen bonds, may also play a role in the structural formation of ACPs.


Subject(s)
Hydrogen , Phosphates , Calcium/chemistry , Calcium Phosphates/chemistry , Water
12.
Sensors (Basel) ; 22(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35590970

ABSTRACT

As a substitute for rigid sensors, flexible sensing materials have been greatly developed in recent years, but maintaining the stability of conductive fillers and the stability of micro-strain sensing is still a major challenge. In this experiment, we innovatively prepared a polyurethane-based cellulose acetate composite membrane (CA/TPU) with abundant mesopores through electrospinning. Then, we reduced graphene oxide (rGO)-as a conductive filler-and graphene oxide (GO)-as an insulating layer-which were successively and firmly anchored on the CA/TPU nanofiber membrane with the ultrasonic impregnation method, to obtain an rGO/GO@CA/TPU sensor with a GF of 3.006 under a very small strain of 0.5%. The flexibility of the film and its high sensitivity under extremely low strains enables the detection of subtle human motions (such as finger bending, joint motion, etc.), making it suitable for potential application in wearable electronic devices.


Subject(s)
Graphite , Wearable Electronic Devices , Cellulose/analogs & derivatives , Humans , Polyurethanes
13.
Preprint in English | medRxiv | ID: ppmedrxiv-22273864

ABSTRACT

BackgroundCOVID-19 has been a major public health threat for the past two years, with disproportionate effects on the elderly, immunocompromised, and pregnant women. While much has been done in delineating immune dysfunctions and pathogenesis in the former two groups, less is known about the diseases progression in expectant women and children born to them. To address this knowledge gap, we profiled the immune responses in maternal and child sera as well as breast milk in terms of antibody and cytokine expression and performed histopathological studies on placentae obtained from mothers convalescent from antenatal COVID-19. Methods and findingsA total of 17 mother-child dyads (8 cases of antenatal COVID-19 and 9 healthy unrelated controls; 34 individuals in total) were recruited to the Gestational Immunity For Transfer (GIFT) study. Maternal and infant sera, and breast milk samples were collected over the first year of life. All samples were analyzed for IgG and IgA against whole SARS-CoV-2 spike protein, the spike receptor-binding domain (RBD), and previously reported immunodominant epitopes, with conventional ELISA approaches. Cytokine levels were quantified in maternal sera using multiplex microbead-based Luminex arrays. The placentae were examined microscopically. We found high levels of virus-specific IgG in convalescent mothers and similarly elevated titers in newborn children. Virus-specific IgG in infant circulation waned within 3-6 months of life. Virus-specific IgA levels were variable among convalescent individuals sera and breast milk. Convalescent mothers also showed a blood cytokine signature indicative of a persistent pro-inflammatory state. Four placentae presented signs of acute inflammation marked by neutrophil infiltration even though >50 days had elapsed between virus clearance and delivery. Administration of a single dose of BNT162b2 mRNA vaccine to mothers convalescent from antenatal COVID-19 increased virus-specific IgG and IgA titers in breast milk. ConclusionsAntenatal SARS-CoV-2 infection led to high plasma titres of virus-specific antibodies in infants postnatally. However, this was not reflected in milk; milk-borne antibody levels varied widely. Additionally, placentae from COVID-19 positive mothers exhibited signs of acute inflammation with neutrophilic involvement, particularly in the subchorionic region. Virus neutralisation by plasma was not uniformly achieved, and the presence of antibodies targeting known immunodominant epitopes did not assure neutralisation. Antibody transfer ratios and the decay of transplacentally transferred virus-specific antibodies in neonatal circulation resembled that for other pathogens. Convalescent mothers showed signs of chronic inflammation marked by persistently elevated IL17RA levels in their blood. A single dose of the Pfizer BNT162b2 mRNA vaccine provided significant boosts to milk-borne virus-specific antibodies, highlighting the importance of receiving the vaccine even after natural infection with the added benefit of enhanced passive immunity. The study is registered at clinicaltrials.gov under the identifier NCT04802278.

14.
J Org Chem ; 87(6): 4051-4060, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35201777

ABSTRACT

The palladium-catalyzed three-component alkoxyarylation reaction of [60]fullerene with primary/secondary alcohols and aryl iodides generates a series of 1,4-(alkoxy)(aryl)[60]fullerene derivatives. Plausible reaction pathways for the formation of 1,4-(alkoxy)(aryl)[60]fullerenes are proposed. In addition, the electrochemical properties of the synthesized 1,4-alkoxyarylation adducts are investigated.

15.
Sci Rep ; 12(1): 1067, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058491

ABSTRACT

Missing values are a major issue in quantitative proteomics analysis. While many methods have been developed for imputing missing values in high-throughput proteomics data, a comparative assessment of imputation accuracy remains inconclusive, mainly because mechanisms contributing to true missing values are complex and existing evaluation methodologies are imperfect. Moreover, few studies have provided an outlook of future methodological development. We first re-evaluate the performance of eight representative methods targeting three typical missing mechanisms. These methods are compared on both simulated and masked missing values embedded within real proteomics datasets, and performance is evaluated using three quantitative measures. We then introduce fused regularization matrix factorization, a low-rank global matrix factorization framework, capable of integrating local similarity derived from additional data types. We also explore a biologically-inspired latent variable modeling strategy-convex analysis of mixtures-for missing value imputation and present preliminary experimental results. While some winners emerged from our comparative assessment, the evaluation is intrinsically imperfect because performance is evaluated indirectly on artificial missing or masked values not authentic missing values. Nevertheless, we show that our fused regularization matrix factorization provides a novel incorporation of external and local information, and the exploratory implementation of convex analysis of mixtures presents a biologically plausible new approach.


Subject(s)
Data Interpretation, Statistical , Proteomics/statistics & numerical data , Algorithms , Proteomics/methods
16.
Acta Pharmaceutica Sinica B ; (6): 708-722, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-929321

ABSTRACT

Herein, we define the role of ferroptosis in the pathogenesis of diabetic cardiomyopathy (DCM) by examining the expression of key regulators of ferroptosis in mice with DCM and a new ex vivo DCM model. Advanced glycation end-products (AGEs), an important pathogenic factor of DCM, were found to induce ferroptosis in engineered cardiac tissues (ECTs), as reflected through increased levels of Ptgs2 and lipid peroxides and decreased ferritin and SLC7A11 levels. Typical morphological changes of ferroptosis in cardiomyocytes were observed using transmission electron microscopy. Inhibition of ferroptosis with ferrostatin-1 and deferoxamine prevented AGE-induced ECT remodeling and dysfunction. Ferroptosis was also evidenced in the heart of type 2 diabetic mice with DCM. Inhibition of ferroptosis by liproxstatin-1 prevented the development of diastolic dysfunction at 3 months after the onset of diabetes. Nuclear factor erythroid 2-related factor 2 (NRF2) activated by sulforaphane inhibited cardiac cell ferroptosis in both AGE-treated ECTs and hearts of DCM mice by upregulating ferritin and SLC7A11 levels. The protective effect of sulforaphane on ferroptosis was AMP-activated protein kinase (AMPK)-dependent. These findings suggest that ferroptosis plays an essential role in the pathogenesis of DCM; sulforaphane prevents ferroptosis and associated pathogenesis via AMPK-mediated NRF2 activation. This suggests a feasible therapeutic approach with sulforaphane to clinically prevent ferroptosis and DCM.

17.
Chinese Pharmacological Bulletin ; (12): 501-505, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014109

ABSTRACT

At present, METH has surpassed the traditional illegal psychoactive substances and become the most widely abused illegal psychostimulant in China.Endoplasmic reticulum ( ER) plays an important role in regulating the normal physiological functions of various cells by virtue of its strong membrane strnc- ture and a large number of enzymes on the membrane.Endoplasmic reticulum stress ( ERS) is a series of adaptive responses made by cells when ER homeostasis is destroyed.When ERS occurs, it will drive the activation of unfolded protein response (I PR ) , which aims to protect cells from stress, reduce biosyn- thetic load and help to rebuild cell homeostasis.Persistent ERS will further aggravate the pressure of ER and induce cell death by using UPR signaling pathway.'Hie neurotoxicity induced by METH is closely related to ERS.This paper elaborates on ERS and UPR signaling pathway, and summarizes the relationship between ERS.apoptosis and autophagy, so as to provide new ideas and potential therapeutic targets for the basic research and prevention of METH induced neurotoxicity mechanism.

18.
Preprint in English | medRxiv | ID: ppmedrxiv-21261932

ABSTRACT

BackgroundSince December 2020, public health agencies have implemented a variety of vaccination strategies to curb the spread of SARS-CoV-2, along with pre-existing Nonpharmaceutical Interventions (NPIs). Initial strategy focused on vaccinating the elderly to prevent hospitalizations and deaths. With vaccines becoming available to the broader population, we aimed to determine the optimal strategy to enable the safe lifting of NPIs while avoiding virus resurgence. MethodsWe developed a compartmental deterministic SEIR model to simulate the lifting of NPIs under different vaccination rollout scenarios. Using case and vaccination data from Toronto, Canada between December 28, 2020 and May 19, 2021, we estimated transmission throughout past stages of NPI escalation/relaxation to compare the impact of lifting NPIs on different dates on cases, hospitalizations, and deaths, given varying degrees of vaccine coverages by 20-year age groups, accounting for waning immunity. ResultsWe found that, once coverage among the elderly is high enough (80% with at least one dose), the main age groups to target are 20-39 and 40-59 years, whereby first-dose coverage of at least 70% by mid-June 2021 is needed to minimize the possibility of resurgence if NPIs are to be lifted in the summer. While a resurgence was observed for every scenario of NPI lifting, we also found that under an optimistic vaccination coverage (70% by mid-June, postponing reopening from August 2021 to September 2021can reduce case counts and severe outcomes by roughly 80% by December 31, 2021. ConclusionsOur results suggest that focusing the vaccination strategy on the working-age population can curb the spread of SARS-CoV-2. However, even with high vaccination coverage in adults, lifting NPIs to pre-pandemic levels is not advisable since a resurgence is expected to occur, especially with earlier reopening.

20.
Preprint in English | medRxiv | ID: ppmedrxiv-21258275

ABSTRACT

Antigen detection provides particularly valuable information for medical diagnoses; however, the current detection methods are less sensitive and accurate than nucleic acid analysis. The combination of CRISPR/Cas12a and aptamers provides a new detection paradigm, but sensitive sensing and stable amplification in antigen detection remain challenging. Here, we present a PCR-free multiple trigger dsDNA tandem-based signal amplification strategy and a de novo designed dual aptamer synergistic sensing strategy. Integration of these two strategies endowed the CRISPR/Cas12a and aptamer-based method with ultra-sensitive, fast, and stable antigen detection. In a demonstration of this method, the limit of detection was at the single virus level (0.17 fM, approximately two copies/L) in SARS-CoV-2 antigen nucleocapsid protein analysis of saliva or serum samples. The entire procedure required only 20 minutes. Given our systems simplicity and modular setup, we believe that it could be adapted reasonably easily for general applications in CRISPR/Cas12a-aptamer-based detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...