Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanoscale ; 8(47): 19620-19628, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27853794

ABSTRACT

The free energy associated with transferring a set of fullerene particles through a finite water layer is calculated using explicit solvent molecular dynamic simulations. Each fullerene particle is a carbon network of one or more spheroidal shells of graphitic carbon, and include single-shell (single-wall) or nested multi-shelled (nano-onions) structures ranging from 6 to 28 Å in radius. Corresponding changes in energy suggest a stronger affinity of carbon nano-onions for water compared to their single-shelled analogues. In the case of multi-shelled structures, the free energy profiles display a global minimum only in the bulk liquid indicating a high affinity of multi-shelled fullerene for complete hydration. Single-wall particles however, display a minimum at the air-water interface and for particles larger than 2 nm this minimum is a global minimum possessing a lower energy compared to the particle's state of complete hydration. While the propensity for single-shell particles to adsorb to the air-interface may increase with increasing particle size, there is an indication based on line tension calculations that larger single-shell particles may actually exhibit enhanced wetting compared to their smaller analogues.

2.
J Phys Chem B ; 120(42): 11018-11025, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27712056

ABSTRACT

Nested fullerenes display a range of unique properties influenced by their size and shape. In this paper, the size- and shape-dependent aggregation of nested fullerenes in water is studied using explicit solvent molecular dynamic simulations. It is shown that water forms a layered structure near the surface of the particle, with the density of interfacial water increasing with increasing particle size. Meanwhile, water molecules near the extended facets of large nested fullerenes are unable to maintain their hydrogen bonding network, leading to a shape and size mediated structuring of surrounding waters. These distortions affect the overall association kinetics of particles in water with spherically shaped particles transitioning quickly into contact, while larger fullerenes, characterized by a lower sphericity, cluster at a much slower rate.

3.
Chem Sci ; 6(2): 1370-1378, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29560224

ABSTRACT

In this study, by using X-ray powder diffraction profiles as blueprints, we successfully mapped the most probable molecular-level structural arrangement of the PMMA super-helix stereocomplexes through molecular dynamic simulations. Molecular-level resolution of the PMMA triple-helix supramolecule was not previously achievable by experimental methods. After constructing molecular models of stereo-regular complexes composed of linear it- and st-PMMAs, our all-atom molecular dynamics simulations identified the stereocomplex structure that best reproduces experimental diffraction profiles and thermodynamic properties as a double helix of isotactic (it-)PMMA with a helical pitch of 1.8 nm and 9 units per turn surrounded by a single helix of syndiotactic (st-)PMMA with an average helical pitch of 0.9 nm and 20 units per turn. The it-/st- complexing stoichiometry in the PMMA triple-helix is therefore 9 : 20. This presents the first all-atom model of the it-/st-PMMA triple-helix stereocomplex that accurately fits experimental X-ray diffraction profiles. In addition, the simulation results revealed the outer st-PMMA helix of the PMMA stereocomplex has a fiber diameter of at least 1.85 nm and adopts a non-ideal helical geometry. Furthermore, through dynamic simulations, surprising new sights into the effect of the structural configuration of the PMMA stereocomplex (i.e., helical pitch and direction, and tilt angle) on the physical properties of their crystal structures were obtained. Those crystal properties include X-ray diffraction profile, packing density, chain-chain spacing, chain width and cohesive energy density.

4.
J Phys Chem B ; 118(37): 10927-33, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25153318

ABSTRACT

The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.


Subject(s)
Ethylene Glycols/chemistry , Povidone/chemistry , Water/chemistry , Air , Hydrogen Bonding , Molecular Dynamics Simulation , Surface Properties
5.
J Phys Chem B ; 118(37): 10919-26, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25155024

ABSTRACT

Understanding, and improving, the behavior of thin surface films under exposure to externally applied forces is important for applications such as mimicking biological membranes, water evaporation mitigation, and recovery of oil spills. This paper demonstrates that the incorporation of a water-soluble polymer into the surface film composition, i.e., formation of a three-duolayer system, shows improved performance under an applied dynamic stress, with an evaporation saving of 84% observed after 16 h, compared to 74% for the insoluble three-monolayer alone. Canal viscometry and spreading rate experiments, performed using the same conditions, demonstrated an increased surface viscosity and faster spreading rate for the three-duolayer system, likely contributing to the observed improvement in dynamic performance. Brewster angle microscopy and dye-tagged polymers were used to visualize the system and demonstrated that the duolayer and monolayer system both form a homogeneous film of uniform, single-molecule thickness, with the excess material compacting into small floating reservoirs on the surface. It was also observed that both components have to be applied to the water surface together in order to achieve improved performance under dynamic conditions. These findings have important implications for the use of surface films in various applications where resistance to external disturbance is required.

6.
Langmuir ; 30(35): 10617-25, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25141225

ABSTRACT

A computational modeling methodology has been developed and employed to characterize the nanoscale wettability and antifouling properties of functionalized hard and deformable surfaces, with a specific focus on poly(ethylene glycol) grafted substrates and their resistance to graphitic carbons. Empirical evidence suggests that the antifouling behavior of polyethylene PEG is associated with two main mechanisms: steric repulsions and hydration via formation of a structured water layer. However, there is also little attention paid to the contribution of steric repulsion vs surface hydration. We examine these two mechanisms through a combination of in silico contact angle and force measurements at the nanoscale level. We investigate the properties of the grafted functional chains and the underlying substrate, responsible for resisting surface deposition of graphitic contaminants in aqueous solution. Our results reveal that the fouling-release efficiency is enhanced when PEG chains are grafted onto hard hydrophilic substrates such as silica in contrast to deformable polymer substrates where surface modifications are effectively mitigated during interfacial contact with a hard contaminant. We conclude that the contribution of steric repulsion vs surface hydration to the antifouling ability of surfaces is strongly dependent on the nanoscale structure and deformability of the substrate. This generic method can be applied to examine individual contribution of steric repulsions and surface hydration to antifouling performance of grafted chains.

7.
Angew Chem Int Ed Engl ; 53(2): 459-64, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24536101

ABSTRACT

In this study, the stereocomplexation between a novel stereospecific cyclic vinyl polymer, that is, cyclic syndiotactic poly(methyl methacrylate) (st-PMMA), with the complementary linear isotactic (it-) PMMA was investigated. Surprising new insight into the effects of the topology (i.e., end groups), size, and tacticity of the assembling components on stereocomplex formation was obtained. Characterization of the stereocomplexes revealed that the self-assembly of cyclic st-PMMAs and linear it-PMMAs resulted in the formation of an unprecedented "polypseudorotaxane-type" supramolecular assembly. This stereocomplex exhibited remarkably different physical properties as compared to the conventional PMMA triple-helix stereocomplex as a result of the restricted topology imposed by the cyclic st-PMMA assembling component.


Subject(s)
Azides/chemistry , Polycyclic Compounds/chemistry , Polymethyl Methacrylate/chemistry , Azides/chemical synthesis , Click Chemistry , Cyclization , Models, Molecular , Molecular Structure , Polycyclic Compounds/chemical synthesis , Polymethyl Methacrylate/chemical synthesis , Stereoisomerism
8.
Langmuir ; 29(47): 14451-9, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24215111

ABSTRACT

All-atom molecular dynamics simulations and experimental characterization have been used to examine the structure and dynamics of novel evaporation-suppressing films where the addition of a water-soluble polymer to an ethylene glycol monooctadecyl ether monolayer leads to improved water evaporation resistance. Simulations and Langmuir trough experiments demonstrate the surface activity of poly(vinyl pyrrolidone) (PVP). Subsequent MD simulations performed on the thin films supported by the PVP sublayer show that, at low surface pressures, the polymer tends to concentrate at the film/water interface. The simulated atomic concentration profiles, hydrogen bonding patterns, and mobility analyses of the water-polymer-monolayer interfaces reveal that the presence of PVP increases the atomic density near the monolayer film, improves the film stability, and reduces the mobility of interfacial waters. These observations explain the molecular basis of the improved efficacy of these monolayer/polymer systems for evaporation protection of water and can be used to guide future development of organic thin films for other applications.

9.
J Phys Chem B ; 117(13): 3603-12, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23472938

ABSTRACT

Mixed monolayers of 1-octadecanol (C18OH) and ethylene glycol monooctadecyl ether (C18E1) were studied to assess their evaporation suppressing performance. An unexpected increase in performance and stability was found around the 0.5:0.5 bicomponent mixture and has been ascribed to a synergistic effect of the monolayers. Molecular dynamics simulations have attributed this to an additional hydrogen bonding interaction between the monolayer and water, due to the exposed ether oxygen of C18E1 in the mixed system compared to the same ether oxygen in the pure C18E1 system. This interaction is maximized around the 0.5:0.5 ratio due to the particular interfacial geometry associated with this mixture.


Subject(s)
Ethylene Glycol/chemistry , Ethylene Glycols/chemistry , Fatty Alcohols/chemistry , Molecular Dynamics Simulation , Air , Hydrogen Bonding , Surface Properties , Water/chemistry
10.
Langmuir ; 28(50): 17263-72, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23186158

ABSTRACT

Responsive surfaces show potential for many applications; however, the molecular mechanisms of their responsive behavior are often dependent on the nature and properties of the substrate and this dependence is not fully understood. We present a molecular dynamics study on the mechanical response of poly(ethylene glycol) (PEG) grafted on substrates of varying flexibility in "dry" conditions. Our in silico surface loading tests show that when PEG is grafted onto a hard substrate (silica), there is a significant reduction in adhesion to a solid surface, owing to augmented steric repulsions at the interface. However, when the same chains are tethered onto a soft substrate (polyester), interfacial adhesion is strengthened. We find that the deformable substrate allows significant rearrangement of the subsurface and grafted segments during loading. Asperities along the rough soft surface also provide free volume for the tethered chains to occupy, enabling them to carpet the surface and increasing the density at the interface. Our results explain the molecular basis of the mechanical response of PEG when grafted onto hard and soft substrates and provide a rationale for surface protection using PEG.

11.
J Phys Chem B ; 115(14): 3964-71, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21417238

ABSTRACT

This study compares the performance of the all-atom molecular dynamics force fields OPLS-AA and COMPASS, and the united-atom GROMOS96 ff53a6 force field, for organic monolayers at aqueous interfaces, as a function of surface density, temperature, and system size. Where possible, comparison with experimental data was undertaken and used to scrutinize the performance of each force field. We find close agreement between the all-atom force fields (OPLS and COMPASS) and experiment for the description of organic monolayers on water. However, the united-atom force field 53a6 tends to exhibit poorer agreement than the all-atom force fields.

12.
J Phys Chem B ; 109(36): 17224-31, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853198

ABSTRACT

This study examines the adhesion of graphite to functionalized polyester surfaces using a range of qualitative and quantitative measures of theoretical adhesion. Modifications to the polyester surfaces include the addition of hydroxyl, carboxyl, or fluorine substituents with coverages of 0.4 and 0.9 groups per nm(2). In each case, the introduction of substituents to the surface of the polyester was calculated to lead to reduced adhesion to graphite. Effects of surface relaxation on adhesion are studied by employing different simulation protocols. The theoretical results suggest one mechanism to reduce adhesion to carbonaceous solids is to increase atomic roughness using strongly hydrophilic or alternatively strongly hydrophobic substituents.

SELECTION OF CITATIONS
SEARCH DETAIL
...