Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(11): 114305, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948812

ABSTRACT

We report the resonance-enhanced two-photon ionization combined with various detection approaches and quantum chemical calculations of biologically relevant neurotransmitter prototypes, the most stable conformer of 2-phenylethylamine (PEA), and its monohydrate, PEA-H2O, to reveal the possible interactions between the phenyl ring and amino group in the neutral and ionic species. Extracting the ionization energies (IEs) and appearance energy was achieved by measuring the photoionization and photodissociation efficiency curves of the PEA parent and photofragment ions, together with velocity and kinetic energy-broadened spatial map images of photoelectrons. We obtained coinciding upper bounds for the IEs for PEA and PEA-H2O of 8.63 ± 0.03 and 8.62 ± 0.04 eV, within the range predicted by quantum calculations. The computed electrostatic potential maps show charge separation, corresponding to a negative charge on phenyl and a positive charge on the ethylamino side chain in the neutral PEA and its monohydrate; in the cations, the charge distributions naturally become positive. The significant changes in geometries upon ionization include switching of the amino group orientation from pyramidal to nearly planar in the monomer but not in the monohydrate, lengthening of the N-H⋯π hydrogen bond (HB) in both species, Cα-Cß bond in the side chain of the PEA+ monomer, and the intermolecular O-H⋯N HB in PEA-H2O cations, leading to distinct exit channels.

2.
J Phys Chem A ; 126(38): 6767-6779, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36106448

ABSTRACT

The highly successful velocity map imaging (VMI) technique plays a central role in revealing light-matter interactions. Here we demonstrate the related but distinct kinetic energy-broadened spatial map imaging (KESMI) option for recovering KE and angular recoil information on photophysical processes using a VMI system operating in different out-of-focus modes. The characteristic single or double stripes and related steps in the vertical intensity profiles of KESMIs of photoelectrons (PEs) from Ar ionization allow breakthrough developments of a potent global model that enables an understanding and analysis of these patterns. These signatures reflect the relationship between the observed features and predicted convolved discrete KEs and angular distributions. The derivation of the velocity distribution of the PEs ensuing from the ionization of a single H2O quantum state based on the measured and simulated KESMI provides another rigorous test demonstrating and realizing the feasibility of this new approach, which holds future promise on its own or combined with VMI.

3.
J Chem Phys ; 154(13): 134201, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33832240

ABSTRACT

Dynamical or spatial properties of charged species can be obtained using electrostatic lenses by velocity map imaging (VMI) or spatial map imaging (SMI), respectively. Here, we report an approach for extracting dynamical and spatial information from patterns in SMI images that map the initial coordinates, velocity vectors, and angular distributions of charged particles onto the detector, using the same apparatus as in VMI. Deciphering these patterns required analysis and modeling, involving both their predictions from convolved spatial and velocity distributions and fitting observed images to kinetic energies (KEs) and anisotropy parameters (ßs). As the first demonstration of this capability of SMI, the ensuing photoelectrons resulting from (2 + 1) resonant ionization of water in a selected rotational state were chosen to provide a rigorous basis for comparison to VMI. Operation with low acceleration voltages led to a measured SMI pattern with a unique vertical intensity profile that could be least-squares fitted to yield KE and ß, in good agreement with VMI measurement. Due to the potential for improved resolution and the extended KE range achievable by this new technique, we expect that it might augment VMI in applications that require the analysis of charged particles and particularly in processes with high KE release.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 237: 118404, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32361520

ABSTRACT

A new method for multiple laser beams alignment, useful in a wide range of spectroscopies, is proposed and demonstrated. The method, based on the coupling of spatial map imaging (SMI) with velocity map imaging (VMI), aided beams visualization, through interrogation of the ionization signal of different species in a time-of-flight mass spectrometer. This approach is very effective for alignment and for evaluating the spatial overlap of laser beams with a molecular beam. This was demonstrated by monitoring the resonant two-photon ionization spectrum of 2-phenylethylamine (PEA) monomer and its hydrated (PEA-H2O) cluster and the ionization-loss stimulated Raman spectrum of the cluster, via VMIs accumulation, as a function of the exciting laser wavelength. The former permitted immediate classification of the features in the spectrum, corresponding to the molecular ion or the cluster. The proposed methodology will be useful in other challenging multiple laser beam experiments for spectroscopic studies and is expected to improve extensively their outcome.

5.
J Phys Chem Lett ; 7(9): 1717-24, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27101349

ABSTRACT

Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs), are considered to be appealing means for manipulating reaction paths, particularly via initial vibrational preparation. Nevertheless, obtaining direct experimental evidence of whether specific-mode excitation affects the passage at the CI is challenging, requiring well-resolved time- or frequency-domain experiments. Here promotion of methylamine-d2 (CH3ND2) molecules to spectral-resolved rovibronic states on the excited S1 potential energy surface, coupled to sensitive D photofragment probing, allowed us to follow the N-D bond fission dynamics. The branching ratios between slow and fast D photofragments and the internal energies of the CH3ND(X̃) photofragments confirm correlated anomalies for predissociation initiated from specific rovibronic states. These anomalies reflect the existence of a dynamic resonance that strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S1 part during N-D bond elongation, and the manipulated passage through the CI that leads to CH3ND radicals excited with C-N-D bending. This resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...