Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021305

ABSTRACT

BACKGROUND:Among the surface modification technologies of metal implants,micro-arc oxidation has been widely concerned for its convenience,low cost and ability to effectively adjust the microstructure and elements of surface coatings. OBJECTIVE:To summarize research advances in physical and chemical properties and biological activities of oxidation coatings prepared by micro-arc oxidation on different materials. METHODS:The articles about the effects of micro-arc oxidation on the biological activity of medical metals were searched in PubMed and Web of Science based on the English search terms"MAO,micro-arc oxidation,osseointegration,mechanical property,biological activity,angiogenesis,fibrogenesis".The search time was from January 2016 to December 2022.According to the inclusion and exclusion criteria,82 articles were finally retained for review. RESULTS AND CONCLUSION:Micro-arc oxidation is a potential surface modification technology,which can greatly improve the success rate of implantation,and can be widely used in other fields.The specific reasons are as follows:(1)Micro-arc oxidation technology forms special porous morphology on the surface of materials,which can optimize the mechanical properties such as wear resistance and corrosion resistance,contributing to the reduction of the degradation rate of magnesium alloys.(2)Micro-arc oxidation technology can significantly enhance the bioactivity and improve the bioinertness of titanium and titanium alloys through the addition of strontium,hydroxyapatite and other metallic or nonmetallic substances to its porous morphology for helping elevate its osteogenic differentiation,angiogenesis,fibrogenesis and other biological activities.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021436

ABSTRACT

BACKGROUND:Micro-arc oxidation can effectively add bioactive elements to the metal surface and improve the anti-bacterial and anti-inflammatory properties of biomedical metal materials,so this technology has become one of the hotspots of biomedical materials. OBJECTIVE:To summarize the anti-bacterial and anti-inflammatory properties of surface coatings prepared by the combination of micro-arc oxidation and other surface modification technologies. METHODS:Articles from January 1996 to December 2022 were searched on CNKI,WanFang and PubMed databases using Chinese and English search terms"micro-arc oxidation,antibacterial properties,anti-inflammatory properties,metal implants".After preliminary screening according to inclusion and exclusion criteria,89 articles were retained and summarized. RESULTS AND CONCLUSION:The ceramic layer prepared by micro-arc oxidation can improve the anti-bacterial and anti-inflammatory properties of titanium,magnesium and other alloys.Combination with other surface modification technologies can effectively solve the effect of pores on the surface properties of the alloy,and further improve the biological properties of the oxide film.It has a wide application prospect in orthopedics and dentistry.At present,most studies are limited to metal coatings,and most of them focus on metal elements with good antibacterial properties such as silver and copper,while only a few studies mention non-metallic coatings such as graphene oxide,hydroxyapatite and chitosan.In the future,extensive studies can be conducted on inorganic coatings and polymer coatings,and more combinations of different bioactive elements can also be adopted to improve antibacterial properties.Currently,studies on the inflammation of implant coatings prepared by micro-arc oxidation are mostly limited to the immune system and focused on macrophages,while studies on neutrophils and platelets are scarce.In the future,a variety of advanced technologies should be combined to explore the specific effects of micro-arc oxidation coating on other immune cells and inflammatory cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...