Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(1): 153-164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37594698

ABSTRACT

Although the herbicide glyphosate is widely used globally and considered safe, more evidence of its adverse effects on animals and humans is accumulating. The present investigation was aimed at evaluating the impact of different glyphosate concentrations on zootechnical characteristics and clinical, biochemical and immunological blood parameters in Ross 308 broiler chickens. Four groups were employed, including untreated control and three experimental groups fed diets enriched with glyphosate at doses of 10, 20 and 100 ppm that conformed to 0.5, 1 and 5 maximum residue limits, respectively. The results showed that glyphosate is a stress factor triggering a multifaceted effect on important blood parameters (e.g., white blood cell and phagocytic counts), which was shown for the first time in the experiments involving productive meat-type poultry. It was first revealed that glyphosate-induced changes in blood parameters may be related to a negative impact on the zootechnical characteristics including the digestive tract organ development and body weight gain. The study findings suggested that exposure to glyphosate in the feedstuffs can adversely affect the physiological condition and productivity of broilers.


Subject(s)
Glyphosate , Herbicides , Humans , Animals , Chickens/physiology , Herbicides/toxicity , Dietary Exposure , Animal Nutritional Physiological Phenomena , Diet/veterinary , Animal Feed/analysis , Dietary Supplements
2.
J Appl Microbiol ; 134(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37715326

ABSTRACT

AIMS: Gut bacteria play an important role in poultry nutrition and the immune defense system. Changes in the intestinal microbiome affect the physiological state, metabolism, and innate immunity of poultry. The present study aimed to characterize age-related changes in the gastrointestinal tract microflora in broiler chickens, depending on supplementation of the diet with the in-feed antibiotic Stafac® 110 and a Bacillus subtilis strain-based probiotic. METHODS AND RESULTS: In this regard, a comprehensive analysis of the taxonomic structure of the microbial community in the gastrointestinal tract (GIT) of broiler chickens was carried out using a molecular genetic technique of the terminal-restriction fragment length polymorphism analysis and taking into account age dynamics and feeding treatment. A beneficial effect on the microbiological composition and body weight of broilers was observed when using the antibiotic and probiotic in compound feeds. Different bacterial communities were revealed in the duodenum and cecum, and their positive impact on broiler growth was established. The results obtained shed light on the formation of GIT microflora of broiler chickens during the growing period and its changes in response to the use of the antibiotic and the probiotic. CONCLUSIONS: We suggest that the implementation of the tested in-feed antibiotic and probiotic can be beneficial in regulating the intestinal microflora microbiological processes in the GIT and improving the feeding efficiency and productivity of broiler chickens.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Chickens , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/genetics
3.
Animals (Basel) ; 11(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810167

ABSTRACT

The reindeer (Rangifer tarandus L.) is a unique animal inhabitant of arctic regions. Low ambient temperatures and scant diets (primarily, lichens) have resulted in different evolutional adaptations, including the composition of the ruminal microbiota. In the study presented here, the effects of seasonal and regional aspects of the composition of the ruminal microbiota in reindeer (Nenets breed, 38 animals) were studied (wooded tundra from the Yamalo-Nenetski Autonomous District (YNAD) vs. from the Nenetski Autonomous District (NAD)). The ruminal content of calves (n = 12) and adult animals (n = 26, 15 males and 11 females) was sampled in the summer (n = 16) and winter seasons (n = 22). The composition of the ruminal microbial population was determined by the V3-V4 16S rRNA gene region sequencing. It was found that the population was dominated by Bacteroidetes and Firmicutes phyla, followed by Spirochaetes and Verrucomicrobia. An analysis of the community using non-metric multidimensional scaling and Bray-Curtis similarity metrics provided evidence that the most influential factors affecting the composition of ruminal microbiota are the region (p = 0.001) and season (p = 0.001); heat map analysis revealed several communities that are strongly affected by these two factors. In the summer season, the following communities were significantly larger compared to in the winter season: Coriobactriaceae, Erysipelothrihaceae, and Mycoplasmataceae. The following communities were significantly larger in the winter season compared to in summer: Paraprevotellaceae, Butyrivibrio spp., Succiniclasticum spp., Coprococcus spp., Ruminococcus spp., and Pseudobutyrivibrio spp. In NAD (tundra), the following communities were significantly larger in comparison to YNAD (wooded tundra): Verrucomicrobia (Verruco-5), Anaerolinaceae, PeHg47 Planctomycetes, cellulolytic Lachnospiraceae, and Succiniclasticum spp. The following bacterial groups were significantly larger in YNAD in comparison to NAD: cellulolytic Ruminococaceae, Dehalobacteriaceae, Veillionelaceae, and Oscilospira spp. The significant differences in the ruminal microbial population were primarily related to the ingredients of diets, affected by region and season. The summer-related increases in the communities of certain pathogens (Mycoplasmataceae, Fusobacterium spp., Porphyromonas endodentalis) were found. Regional differences were primarily related to the ratio of the species involved in ruminal cellulose degradation and ruminal fatty acids metabolism; these differences reflect the regional dissimilarities in botanical diet ingredients.

4.
Animals (Basel) ; 11(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535430

ABSTRACT

One of the main roles in poultry resistance to infections caused by Salmonella is attributed to host immunity and intestinal microbiota. We conducted an experiment that involved challenging Lohmann White laying hens with Salmonella Enteritidis (SE), feeding them a diet supplemented with an EOs-based phytobiotic Intebio®. At 1 and 7 days post-inoculation, the expression profiles of eight genes related to immunity, transport of nutrients in the intestine, and metabolism were examined. Cecal microbiome composition and blood biochemical/immunological indices were also explored and egg production traits recorded. As a result, the SE challenge of laying hens and Intebio® administration had either a suppressive or activating effect on the expression level of the studied genes (e.g., IL6 and BPIFB3), the latter echoing mammalian/human tissue-specific expression. There were also effects of the pathogen challenge and phytobiotic intake on the cecal microbiome profiles and blood biochemical/immunological parameters, including those reflecting the activity of the birds' immune systems (e.g., serum bactericidal activity, ß-lysine content, and immunoglobulin levels). Significant differences between control and experimental subgroups in egg performance traits (i.e., egg weight/number/mass) were also found. The phytobiotic administration suggested a positive effect on the welfare and productivity of poultry.

5.
Animals (Basel) ; 9(9)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31462004

ABSTRACT

This study was performed to investigate the differential expression of eight immunity genes and the bacterial profiles in the caecum of growing chickens challenged with Salmonella enterica serovar Enteritidis (SE) at 1 and 23 days post inoculation (dpi) in response to SE infection at 19 days of age and administration of the phytobiotic Intebio. Following infection, the genes CASP6 and IRF7 were upregulated by greater than twofold. Chicks fed Intebio showed at 1 dpi upregulation of AvBD10, IL6, IL8L2, CASP6 and IRF7. At 23 dpi, expression of AvBD11, IL6, IL8L2, CASP6 and IRF7 lowered in the experiment subgroups as compared with the control. Examination of the caecal contents at 1 dpi demonstrated a significant decrease in the microbial biodiversity in the infected subgroup fed normal diet. Bacterial content of Lactobacillus and Bacillus declined, while that of Enterobacteriaceae rose. In the infected subgroup fed Intebio, a pronounced change in composition of the microflora was not observed. In the early infection stages, the phytobiotic seemed to promote response to infection. Subsequently, an earlier suppression of the inflammatory reaction took place in chickens fed Intebio. Thus, use of Intebio as a drug with phytobiotic activity in chickens, including those infected with Salmonella, proved to be promising.

SELECTION OF CITATIONS
SEARCH DETAIL
...