Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35335523

ABSTRACT

Conventional solid injection molding (CIM) and microcellular injection molding (MIM) of a highly filled polycarbonate (PC) composite with glass fibers and carbon black were performed for molding ASTM tensile test bars and a box-shape part with variable wall thickness. A scanning electron microscope (SEM) was used to examine the microstructure at the fractured surface of the tensile test bar samples. The fine and uniform cellular structure suggests that the PC composite is a suitable material for foaming applications. Standard tensile tests showed that, while the ultimate strength and elongation at break were lower for the foamed test bars at 4.0-11.4% weight reduction, their specific Young's modulus was comparable to that of their solid counterparts. A melt flow and transition model was proposed to explain the unique, irregular "tiger-stripes" exhibited on the surface of solid test bars. Increasing the supercritical fluid (SCF) dosage and weight reduction of foamed samples resulted in swirl marks on the part surface, making the tiger-stripes less noticeable. Finally, it was found that an injection pressure reduction of 25.8% could be achieved with MIM for molding a complex box-shaped part in a consistent and reliable fashion.

2.
Polym Eng Sci ; 61(4): 1050-1065, 2021 Apr.
Article in English | MEDLINE | ID: mdl-35444346

ABSTRACT

Polytetrafluoroethylene (PTFE) and expanded PTFE (ePTFE) are ideal for various applications. Because PTFE does not flow, even when heated above its melting point, PTFE components are fabricated using a process called paste extrusion. This process entails blending PTFE powder particles with a lubricant to form PTFE paste, which is subsequently preformed, extruded, expanded (in the case of ePTFE), and sintered. In this study, ethanol was proposed as an alternative green lubricant for PTFE processing. Not only is ethanol benign and biofriendly, it provides excellent wettability and processing benefits. Using ethanol as a lubricant, the shear viscosity of PTFE paste and its flow behavior during paste extrusion were investigated. Frequency sweeps using a parallel-plate rheometer were performed on PTFE paste samples and various grits of sandpaper were used to reduce wall slip of PTFE paste. A viscosity model was generated and a multiphysics software was used to simulate PTFE paste extrusion. The simulated extrusion pressure was compared to experimental data of actual paste extrusion. Flow visualization experiments using colored PTFE layers were conducted to reveal the flow profile of the PTFE paste. The morphology of the expanded ePTFE tubes was examined using scanning electron microscopy and the effect of expansion ratio on ePTFE morphology was quantified.

3.
Biomacromolecules ; 21(9): 3807-3816, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32786520

ABSTRACT

Cardiovascular diseases plague human health because of the lack of transplantable small-diameter blood vessel (SDBV) grafts. Although expanded polytetrafluoroethylene (ePTFE) has the potential to be used as a biocompatible material for SDBV grafts, long-term patency is still the biggest challenge. As discussed in this paper, by virtue of a novel material formulation and a new and benign alcohol/water lubricating agent, biofunctionalized ePTFE blood vessel grafts aimed at providing long-term patency were fabricated. Compared to the most prevalent modification of PTFE, namely surface treatment, this method realized bulk treatment, which could guarantee homogeneous and long-lasting performance throughout PTFE products. These blood vessel grafts included embedded functional biomolecules, such as arginylglycylaspartic acid, heparin, and selenocystamine, using water as a solvent in paste extrusion and in the expansion of ePTFE. Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope results confirmed the existence of these targeting biomolecules in the as-fabricated ePTFE blood vessel grafts. Meanwhile, the greatly improved biological functions of the grafts were demonstrated via live and dead assays, cell morphology, CD31 staining, nitric oxide (NO) release, and anticoagulation tests. This novel and benign material formulation and fabrication method provides an opportunity to produce multibiofunctional ePTFE blood vessel grafts in a single step, thus yielding a potent product with significant commercial and clinical potential.


Subject(s)
Blood Vessel Prosthesis , Polytetrafluoroethylene , Biocompatible Materials , Heparin , Humans
4.
Chem Eng J ; 348: 786-798, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30455583

ABSTRACT

Mimicking the mechanical properties of native tissues is a critical criterion for an ideal tissue engineering scaffold. However, most biodegradable synthetic materials, including polyester-based polyurethanes (PUs), consist of rigid polyester chains and have high crystallinity. They typically lack the elasticity of most human tissues. In this study, a new type of biodegradable PU with excellent elasticity was synthesized based on the controlled crosslinking of poly(ester ether) triblock copolymer diols and polycaprolactone (PCL) triols using urethane linkages. Three-dimensional (3D) porous scaffolds with a defined geometry, tunable microstructures, and adjustable mechanical properties were synthesized in situ using an isocyanate-ended copolymer, a tri-armed PCL, and a chain extender. The mechanical properties of the scaffolds can be easily tuned by changing the ratio of reactants, varying the solution concentration, or using a porogen. Notably, all of these scaffolds, although mostly made of rigid PCL chains, showed remarkable elasticity and cyclical properties. With an optimized molecular design, a maximum recovery rate of 99.8% was achieved. This was because the copolymer provided molecular flexibility while the long chain crosslinking of PCL triol hindered crystallization, thus making the PU behave like an amorphous elastic material. Moreover, the in vitro cell culture of 3T3 fibroblasts and MG63 osteoblast-like cells confirmed the biocompatibility of these PU scaffolds and revealed that scaffolds with different stiffnesses can stimulate the proliferation of different types of cells. All of these attributes make PU scaffolds extremely suitable for the regeneration of tissues that experience dynamic loading.

5.
Polymers (Basel) ; 10(1)2017 Dec 30.
Article in English | MEDLINE | ID: mdl-30966070

ABSTRACT

The processability of injection molding ultra-high molecular weight polyethylene (UHMWPE) was improved by introducing supercritical nitrogen (scN2) or supercritical carbon dioxide (scCO2) into the polymer melt, which decreased its viscosity and injection pressure while reducing the risk of degradation. When using the special full-shot option of microcellular injection molding (MIM), it was found that the required injection pressure decreased by up to 30% and 35% when scCO2 and scN2 were used, respectively. The mechanical properties in terms of tensile strength, Young's modulus, and elongation-at-break of the supercritical fluid (SCF)-loaded samples were examined. The thermal and rheological properties of regular and SCF-loaded samples were analyzed using differential scanning calorimetry (DSC) and parallel-plate rheometry, respectively. The results showed that the temperature dependence of UHMWPE was very low, suggesting that increasing the processing temperature is not a viable method for reducing injection pressure or improving processability. Moreover, the use of scN2 and scCO2 with UHMWPE and MIM retained the high molecular weight, and thus the mechanical properties, of the polymer, while regular injection molding led to signs of degradation.

SELECTION OF CITATIONS
SEARCH DETAIL
...