Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(24): 35283-35307, 2024 May.
Article in English | MEDLINE | ID: mdl-38724844

ABSTRACT

Dye pollution in water caused by excessive discharge of industrial effluent has become a major environmental problem in recent decades because of its irreversible effects on human health. In this study, low-cost carbon-based adsorbents synthesized from Oleaster seed (OS) were prepared in three forms of powder (PAC), film (FAC), and granule (GAC) and used for the removal of methylene blue dye. The properties of the synthesized adsorbents were characterized by SEM-EDX, BET, XPS and FTIR analyses. The maximum adsorption capacity (qmax) of PAC, FAC, and GAC adsorbents were obtained as 68.49, 32.25, and 15.10 mg/g, respectively at the optimum experimental conditions of pH = 10, adsorbent dosages of 0.5, 1, and 2 g/l, contact times of 60, 90, and 120 min, dye concentration of 10 mg/L, and temperature of 25°C. The Langmuir isotherm well described the equilibrium data for all three adsorbents. The pseudo-second-order kinetic model provided the best fit with the adsorption data obtained from all three adsorbents. Adsorption occurred spontaneously through a combination of chemical and physical mechanisms, with a thermodynamically exothermic process. The desorption experiments demonstrated that all the adsorbents have substantial potential for recovery. The novel activated carbon/alginate composite films are proposed as more promising biosorbents to remove MB dye from the aquatic environment compared to GAC adsorbents.


Subject(s)
Charcoal , Coloring Agents , Powders , Seeds , Water Pollutants, Chemical , Water Purification , Adsorption , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Coloring Agents/chemistry , Seeds/chemistry , Kinetics , Water Purification/methods , Carbon/chemistry , Methylene Blue/chemistry
2.
Polymers (Basel) ; 15(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050283

ABSTRACT

In this paper, the properties of organic-inorganic hybrid polymer materials, which were synthesized from an aluminosilicate inorganic matrix with the addition of brushite and aminosilane grafted on one side and PEI covalently bonded composites on the other side, were examined. The synthesized organic-inorganic hybrid polymers were examined in terms of a structural, morphological, thermo-gravimetric, and adsorption-desorption analysis and also as potential CO2 capturers. The structural and phase properties as well as the percentage contents of the crystalline and amorphous phase were determined by the X-ray diffraction method. The higher content of the amorphous phase in the structure of hybrid polymers was proven in metakaolin and metakaolin-brushite hybrid samples with the addition of amino silane and with 1,000,000 PEI in a structure. The DRIFT method showed the main band changes with the addition of an organic phase and inorganic matrix. Microstructural studies with the EDS analysis showed a uniform distribution of organic and inorganic phases in the hybrid geopolymers. The thermo-gravimetric analysis showed that organic compounds are successfully bonded to inorganic polymer matrix, while adsorption-desorption analysis confirmed that the organic phase completely covered the surface of the inorganic matrix. The CO2 adsorption experiments showed that the amine-modified composites have the higher capture capacity, which is 0.685 mmol·g-1 for the GM10 sample and 0.581 mmol·g-1 for the BGM10 sample, with 1,000,000 PEI in the structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...