Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Orthopadie (Heidelb) ; 52(10): 834-842, 2023 Oct.
Article in German | MEDLINE | ID: mdl-37567919

ABSTRACT

INTRODUCTION: MPFL reconstruction represents one of the most important surgical treatment options for recurrent patellar dislocations at low flexion angles associated with low flexion patellofemoral instability. Nevertheless, the role of quadriceps muscles in patients with patellofemoral instability before and after patellofemoral stabilization using MPFL reconstruction has not been fully elucidated. The present study investigates the influence of quadriceps muscles on the patellofemoral contact in patients with low flexion patellofemoral instability (PFI) before and after surgical patellofemoral stabilization using MPFL reconstruction using 3 T MRI datasets in early degrees of flexion (0-30°). METHODS: In this prospective cohort study, 15 patients with low flexion PFI before and after MPFL reconstruction and 15 subjects with healthy knee joints were studied using dynamic MRI scans. MRI scans were performed in a custom-made pneumatic knee loading device to determine the patellofemoral cartilage contact area (CCA) with and without quadriceps activation (50 N). Comparative measurements were performed using 3D cartilage and bone meshes in 0-30° knee flexion in the patients with patellofemoral instability preoperatively and postoperatively. RESULTS: The preoperative patellofemoral CCA of patients with low flexion PFI was 67.3 ± 47.3 mm2 in 0° flexion, 118.9 ± 56.6 mm2 in 15° flexion, and 267.6 ± 96.1 mm2 in 30° flexion. With activated quadriceps muscles (50 N), the contact area was 72.4 ± 45.9 mm2 in extension, 112.5 ± 54.9 mm2 in 15° flexion, and 286.1 ± 92.7 mm2 in 30° flexion without statistical significance. Postoperatively determined CCA revealed 159.3 ± 51.4 mm2 , 189.6 ± 62.2 mm2 and 347.3 ± 52.1 mm2 in 0°, 15° and 30° flexion. Quadriceps activation with 50 N showed a contact area in extension of 141.0 ± 63.8 mm2, 206.6 ± 67.7 mm2 in 15° flexion, and 353.5 ± 64.6 mm2 in 30° flexion, also without statistical difference compared with unloaded CCAs. Subjects with healthy knee joints showed an increase of 10.3% in CCA at 30° of flexion (p = 0.003). CONCLUSION: Although patellofemoral CCA increases significantly after isolated MPFL reconstruction in patients with low flexion patellofemoral instability, there is no significant influence of quadriceps muscles either preoperatively or postoperatively.


Subject(s)
Patellofemoral Joint , Humans , Patellofemoral Joint/diagnostic imaging , Quadriceps Muscle/diagnostic imaging , Prospective Studies , Tendons , Ligaments, Articular/surgery , Biomechanical Phenomena
2.
Orthop J Sports Med ; 11(5): 23259671231160215, 2023 May.
Article in English | MEDLINE | ID: mdl-37213660

ABSTRACT

Background: Medial patellofemoral ligament (MPFL) reconstruction is a well-established procedure for the treatment of patients with patellofemoral instability (PFI) at low flexion angles (0°-30°). Little is known about the effect of MPFL surgery on patellofemoral cartilage contact area (CCA) during the first 30° of knee flexion. Purpose/Hypothesis: The purpose of this study was to investigate the effect of MPFL reconstruction on CCA using magnetic resonance imaging (MRI). We hypothesized that patients with PFI would have a lower CCA than patients with healthy knees and that CCA would increase after MPFL reconstruction over the course of low knee flexion. Study Design: Cohort study; Level of evidence, 2. Methods: In a prospective matched-paired cohort study, the CCA of 13 patients with low-flexion PFI was determined before and after MPFL reconstruction, and the data were compared with those of 13 healthy volunteers (controls). MRI was performed with the knee at 0°, 15°, and 30° of flexion in a custom-designed knee-positioning device. To suppress motion artifacts, motion correction was performed using a Moiré Phase Tracking system via a tracking marker attached to the patella. The CCA was calculated on the basis of semiautomatic cartilage and bone segmentation and registration. Results: The CCA (mean ± SD) at 0°, 15°, and 30° of flexion for the control participants was 1.38 ± 0.62, 1.91 ± 0.98, and 3.68 ± 0.92 cm2, respectively. In patients with PFI, the CCA at 0°, 15°, and 30° of flexion was 0.77 ± 0.49, 1.26 ± 0.60, and 2.89 ± 0.89 cm2 preoperatively and 1.65 ± 0.55, 1.97 ± 0.68, and 3.52 ± 0.57 cm2 postoperatively. Patients with PFI exhibited a significantly reduced preoperative CCA at all 3 flexion angles when compared with controls (P ≤ .045 for all). Postoperatively, there was a significant increase in CCA at 0° of flexion (P = .001), 15° of flexion (P = .019) and 30° of flexion (P = .026). There were no significant postoperative differences in CCA between patients with PFI and controls at any flexion angle. Conclusion: Patients with low-flexion patellar instability showed a significant reduction in patellofemoral CCA at 0°, 15°, and 30° of flexion. MPFL reconstruction increased the contact area significantly at all angles.

3.
J Clin Med ; 12(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902705

ABSTRACT

BACKGROUND: Patellofemoral instability (PFI) leads to chronic knee pain, reduced performance and chondromalacia patellae with consecutive osteoarthritis. Therefore, determining the exact patellofemoral contact mechanism, as well as the factors leading to PFI, is of great importance. The present study compares in vivo patellofemoral kinematic parameters and the contact mechanism of volunteers with healthy knees and patients with low flexion patellofemoral instability (PFI). The study was performed with a high-resolution dynamic MRI. MATERIAL/METHODS: In a prospective cohort study, the patellar shift, patella rotation and the patellofemoral cartilage contact areas (CCA) of 17 patients with low flexion PFI were analyzed and compared with 17 healthy volunteers, matched via the TEA distance and sex, in unloaded and loaded conditions. MRI scans were carried out for 0°, 15° and 30° knee flexion in a custom-designed knee loading device. To suppress motion artifacts, motion correction was performed using a moiré phase tracking system with a tracking marker attached to the patella. The patellofemoral kinematic parameters and the CCA was calculated on the basis of semi-automated cartilage and bone segmentation and registrations. RESULTS: Patients with low flexion PFI showed a significant reduction in patellofemoral CCA for 0° (unloaded: p = 0.002, loaded: p = 0.004), 15° (unloaded: p = 0.014, loaded: p = 0.001) and 30° (unloaded: p = 0.008; loaded: p = 0.001) flexion compared to healthy subjects. Additionally, patients with PFI revealed a significantly increased patellar shift when compared to volunteers with healthy knees at 0° (unloaded: p = 0.033; loaded: p = 0.031), 15° (unloaded: p = 0.025; loaded: p = 0.014) and 30° flexion (unloaded: p = 0.030; loaded: p = 0.034) There were no significant differences for patella rotation between patients with PFI and the volunteers, except when, under load at 0° flexion, PFI patients showed increased patellar rotation (p = 0.005. The influence of quadriceps activation on the patellofemoral CCA is reduced in patients with low flexion PFI. CONCLUSION: Patients with PFI showed different patellofemoral kinematics at low flexion angles in both unloaded and loaded conditions compared to volunteers with healthy knees. Increased patellar shifts and decreased patellofemoral CCAs were observed in low flexion angles. The influence of the quadriceps muscle is diminished in patients with low flexion PFI. Therefore, the goal of patellofemoral stabilizing therapy should be to restore a physiologic contact mechanism and improve patellofemoral congruity for low flexion angles.

4.
J Pers Med ; 12(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422099

ABSTRACT

Purpose: Approximately 60% of patients undergoing arthroscopy of the knee present with chondral defects. If left untreated, osteochondral lesions can trigger an early onset of osteoarthritis. Many cartilage repair techniques are mainly differentiated in techniques aiming for bone marrow stimulation, or cell-based methods. Cartilage repair can also be categorized in one- and two-stage procedures. Some two-stage procedures come with a high cost for scaffolds, extensive cell-processing, strict regulatory requirements, and limited logistical availability. Minced cartilage, however, is a one-stage procedure delivering promising results in short term follow-up, as noted in recent investigations. However, there is no available literature summarizing or synthesizing clinical data. The purpose of this study was to analyze and synthesize data from the latest literature in a meta-analysis of outcomes after the minced cartilage procedure and to compare its effectiveness to standard repair techniques. Methods: We conducted a systematic review searching the Cochrane, PubMed, and Ovid databases. Inclusion criteria were the modified Coleman methodology Score (mCMS) >60, cartilaginous knee-joint defects, and adult patients. Patient age < 18 years, biomechanical and animal studies were excluded. Relevant articles were reviewed independently by referring to title and abstract. In a systematic review, we compared three studies and 52 patients with a total of 63 lesions. Results: Analysis of Knee Injury and Osteoarthritis Outcome Score (KOOS) sub scores at 12 and 24 months showed a significant score increase in every sub score. Highest mean difference was seen in KOOS sport, lowest in KOOS symptoms (12 month: KOOS sport (Mean difference: 35.35 [28.16, 42.53]; p < 0.0001), lowest in KOOS symptoms (Mean difference: 20.12 [15.43, 24.80]; p < 0.0001)). A comparison of International Knee Documentation Committee (IKDC ) scores visualized a significant score increase for both time points too ((12 month: pooled total mean: 73.00 ± 14.65; Mean difference: 34.33 [26.84, 41.82]; p < 0.00001) (24 month: pooled total mean: 77.64 ± 14.46; mean difference: 35.20 [39.49, 40.92]; p < 0.00001)). Conclusion: Due to no need for separate cell-processing, and thanks to being a one-step procedure, minced cartilage is a promising method for cartilage repair in small defect sizes (mean 2.77 cm2, range 1.3−4.7 cm2). However, the most recent evidence is scarce, and takes only results two years post-surgery into account. Summarized, minced cartilage presents nearly equal short-term improvement of clinical scores (IKDC, KOOS) compared to standard cartilage repair techniques.

5.
J Exp Orthop ; 9(1): 102, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36192527

ABSTRACT

PURPOSE: The menisci transmit load between femur and tibia and thus play a crucial role in the functionality of the knee joint. Knee joint movements have a major impact on the position of the menisci. However, these meniscus movements have not yet been assessed in a validated setting. The objective of this study is to evaluate the meniscal movements in MRI with prospective motion correction based on optical tracking under loading via internal and external tibial torques.  METHODS: Thirty-one healthy volunteers were recruited for this study. MRI scans were performed in internal and external rotation induced by a torque of 5 Nm, using a 3 T MRI. A validated software used the generated images to calculate the absolute meniscus movements as the sum of all vectors. Differences between subgroups were analyzed by using a Wilcoxon signed-rank test.  RESULTS: The MM shows an average movement of 1.79 mm in anterior-lateral direction under internal rotation and 6.01 mm in posterior-lateral direction under external rotation, whereas the LM moves an average of 4.55 mm in posterior-medial direction under internal rotation and 3.58 mm in anterior-medial direction under external rotation. When comparing the overall meniscus movements between internal and external rotation, statistically significant differences were found for total vector length and the direction of meniscus movements for medial and lateral meniscus. The comparison between medial and lateral meniscus movements also showed statistically significant differences in all categories for internal and external rotation. CONCLUSIONS: Overall, the MM and LM movements in internal and external rotation differ significantly in extent and direction, although MM and LM movements in opposite directions during internal and external rotation can be observed. In internal rotation, most meniscus movements were found in the IHLM. In external rotation, the IHMM showed the greatest mobility. Segment analysis of internal vs. external rotation showed less difference in LM movements than MM. LEVEL OF EVIDENCE: Level II.

6.
Orthopadie (Heidelb) ; 51(8): 652-659, 2022 Aug.
Article in German | MEDLINE | ID: mdl-35925283

ABSTRACT

BACKGROUND: Patellofemoral instability is one of the most common pathologies of the knee joint. The planning and implementation of patella-stabilizing operations are very variable. With regard to the operative measures, the preoperative planning is of decisive importance, especially with regard to the complexity of underlying pathologies. OBJECTIVES: The aim of this study was to depict the current healthcare reality in relation to planning and implementation of patella stabilizing operations in Germany. Furthermore, it was to be ascertained whether automated analysis options would facilitate the planning and implementation of surgical procedures (in primary and revision cases). MATERIALS AND METHODS: An online survey with 16 questions was collected by email among all active members of the German Society of Orthopedic and Trauma Surgery. 7974 members were surveyed; 393 responses could then be analyzed. RESULTS: MPFL-reconstruction (89.8%) is the most frequently performed procedure, followed by tibial tubercle transfers (64.9%), osteotomies (51.2%), and trochleoplasty (19.9%). The choice of surgical approach is mainly based on a combination of clinical and radiological findings (90.3%). MRI imaging (81.2%), standard X­ray images (77.4%), and full leg images (76.6%) are mainly used for operative treatment decisions. 59.3% of the respondents would appreciate better preoperative planning and 59.0% would implement more radiologically detectable parameters in their individual preoperative planning if these were automatically available. CONCLUSIONS: The findings of this survey among members of the DGOU identify the MPFL-reconstruction as the central operative approach in the treatment of patellofemoral instabilities, whereas MRI imaging is the diagnostic tool of choice. Future establishment of automated software-based analysis methods could allow a large number of surgeons to expand the radiological parameters taken into account when planning patella-stabilizing operations.


Subject(s)
Patellar Dislocation , Patellofemoral Joint , Humans , Knee Joint/pathology , Ligaments, Articular/pathology , Patella/diagnostic imaging , Patellar Dislocation/diagnosis , Patellofemoral Joint/pathology
7.
Proc Inst Mech Eng H ; 236(6): 841-847, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35373636

ABSTRACT

Olecranon fractures are most frequently stabilized by tension band wiring (TBW), which unfortunately leads to relevant implant removal rates due to K-wire migration and soft tissue irritation. As lag screw osteosynthesis (LSO) might be a gentle and effective alternative in simple fracture patterns, the goal of the present study was to biomechanically compare LSO with TBW in simple olecranon fractures at a cadaver model. A simple olecranon fracture (Mayo type IIA) was created in eight pairs of human cadaver elbows, which were pairwise fixed by either TBW or two transcortical 4.0 mm lag screws. Biomechanical testing was conducted as a pulling force, applied to the triceps tendon in a 90° position. First, cyclic loading between 10 and 300 N was performed for 50,000 cycles. Afterward, maximum load was raised by 0.02 N/cycle until construct failure, what was defined as displacement >2 mm. Besides fracture displacement, failure cycle and failure load, the modes of failure were analyzed. Within the first five cycles, there was no significant difference in displacement (median TBW: 0.2 mm; LSO: 0.5 mm; p = 0.091). Both after 2000 (median TBW: 0.2 mm; LSO: 0.6 mm; p = 0.042) and after 20,000 cycles (median TBW: 0.4 mm; LSO: 0.9 mm; p = 0.027), the difference was significant. Failure cycle (median TBW: 72,639 cycles; LSO: 43,429 cycles; p = 0.017) and failure load (median TBW: 702 N; LSO: 303 N; p = 0.025) differed significantly as well. TBW mostly (6/8) failed at the lock of the cerclage wire, whereas most LSO constructs (5/8) failed as a pullout of the proximal fragment. In conclusion, to our biomechanical findings at human cadaver specimens, simple olecranon fractures treated by LSO show higher dislocation rates and lower failure loads compared to conventional TBW and mostly fail by pullout of the proximal fragment.


Subject(s)
Fractures, Bone , Olecranon Process , Ulna Fractures , Biomechanical Phenomena , Bone Screws , Bone Wires , Cadaver , Fracture Fixation, Internal , Fractures, Bone/surgery , Humans , Olecranon Process/surgery , Ulna Fractures/surgery
8.
Knee Surg Sports Traumatol Arthrosc ; 30(5): 1654-1660, 2022 May.
Article in English | MEDLINE | ID: mdl-34423397

ABSTRACT

PURPOSE: Trochlear dysplasia is a significant risk factor for patellofemoral instability. The severity of trochlear dysplasia is commonly evaluated based on the Dejour classification in axial MRI slices. However, this often leads to heterogeneous assessments. A software to generate MRI-based 3D models of the knee was developed to ensure more standardized visualization of knee structures. The purpose of this study was to assess the intra- and interobserver agreements of 2D axial MRI slices and an MRI-based 3D software generated model in classification of trochlear dysplasia as described by Dejour. METHODS: Four investigators independently assessed 38 axial MRI scans for trochlear dysplasia. Analysis was made according to Dejour's 4 grade classification as well as differentiating between 2 grades: low-grade (types A + B) and high-grade trochlear dysplasia (types C + D). Assessments were repeated following a one-week interval. The inter- and intraobserver agreement was determined using Cohen's kappa (κ) and Fleiss kappa statistic (κ). In addition, the proportion of observed agreement (po) was calculated for assessment of intraobserver agreement. RESULTS: The assessment of the intraobserver reliability with regard to the Dejour-classification showed moderate agreement values both in the 2D (κ = 0.59 ± 0.08 SD) and in the 3D analysis (κ = 0.57 ± 0.08 SD). Considering the 2-grade classification, the 2D (κ = 0.62 ± 0.12 SD) and 3D analysis (κ = 0.61 ± 0.19 SD) each showed good intraobserver matches. The analysis of the interobserver reliability also showed moderate agreement values with differences in the subgroups (2D vs. 3D). The 2D evaluation showed correspondences of κ = 0.48 (Dejour) and κ = 0.46 (high / low). In the assessment based on the 3D models, correspondence values of κ = 0.53 (Dejour) and κ = 0.59 (high / low) were documented. CONCLUSION: Overall, moderate-to-good agreement values were found in all groups. The analysis of the intraobserver reliability showed no relevant differences between 2 and 3D representation, but better agreement values were found in the 2-degree classification. In the analysis of interobserver reliability, better agreement values were found in the 3D compared to the 2D representation. The clinical relevance of this study lies in the superiority of the 3D representation in the assessment of trochlear dysplasia, which is relevant for future analytical procedures as well as surgical planning. LEVEL OF EVIDENCE: Level II.


Subject(s)
Joint Instability , Humans , Joint Instability/surgery , Knee Joint , Magnetic Resonance Imaging , Reproducibility of Results , Software
9.
J Shoulder Elbow Surg ; 30(7): 1519-1526, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33359398

ABSTRACT

BACKGROUND: In the treatment of unstable olecranon fractures, anatomically preshaped locking plates exhibit superior biomechanical results compared with tension band wiring. However, posterior plating (PP) still is accompanied by high rates of plate removal because of soft-tissue irritation and discomfort. Meanwhile, low-profile plates precontoured for collateral double plating (DP) are available and enable muscular soft-tissue coverage combined with angular-stable fixation. The goal of this study was to biomechanically compare PP with collateral DP for osteosynthesis of unstable osteoporotic fractures. METHODS: A comminuted displaced Mayo type IIB fracture was created in 8 osteoporotic pairs of fresh-frozen human cadaveric elbows. Pair-wise angular stable fixation was performed by either collateral DP or PP. Biomechanical testing was conducted as a pulling force to the triceps tendon in 90° of elbow flexion. Cyclical load changes between 10 and 300 N were applied at 4 Hz for 50,000 cycles. Afterward, the maximum load was raised by 0.02 N/cycle until construct failure, which was defined as displacement > 2 mm. Besides failure cycles and failure loads, modes of failure were analyzed. RESULTS: Following DP, a median endurance of 65,370 cycles (range, 2-83,121 cycles) was recorded, which showed no significant difference compared with PP, with 69,311 cycles (range, 150-81,938 cycles) (P = .263). Failure load showed comparable results as well, with 601 N (range, 300-949 N) after DP and 663 N (range, 300-933 N) after PP (P = .237). All PP constructs and 3 of 8 DP constructs failed by proximal fragment cutout, whereas 5 of 8 DP constructs failed by bony triceps avulsion. CONCLUSION: Angular-stable DP showed comparable biomechanical stability to PP in unstable osteoporotic olecranon fractures under high-cycle loading conditions. Failure due to bony triceps avulsion following DP requires further clinical and biomechanical investigation, for example, on suture augmentation or different screw configurations.


Subject(s)
Olecranon Process , Osteoporotic Fractures , Biomechanical Phenomena , Bone Plates , Cadaver , Fracture Fixation, Internal , Humans , Olecranon Process/surgery
10.
J Shoulder Elbow Surg ; 30(2): 365-372, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32619657

ABSTRACT

BACKGROUND: Biodegradable implants have gained increasing importance for the fixation of simple displaced radial head fractures to supersede implant removal and to minimize cartilage destruction. Commonly used polylactide pins still lead to higher rates of secondary loss of reduction compared with metal implants. Alternatively, implants made from a magnesium alloy meanwhile are available in a pin design that hypothetically could perform better than polylactide pins. Because biomechanical data of clinical applications are lacking, the goal of the present study was to biomechanically compare magnesium pins to polylactide pins using a Mason type II radial head fracture model. METHODS: Fourteen pairs of fresh-frozen human cadaver radii with a standardized Mason type II radial head fracture were stabilized either by two 2.0-mm polylactide pins (PPs) or two 2.0-mm magnesium pins (MPs). Biomechanical in vitro testing was conducted as 10 cycles of static loading at 0.1 Hz axially and transversally between 10 and 50 N. Afterward, loosening was tested by dynamic load changes at 4 Hz up to 100,000 cycles. Early fracture displacement was measured after 10,000 cycles. Afterward, maximum loads were raised every 10,000 cycles by 15 N until construct failure, which was defined as fracture displacement ≥2 mm. RESULTS: MP osteosynthesis showed a tendency toward higher primary stability on both axial (MP: 0.19 kN/mm, PP: 0.11 kN/mm; P = .068) and transversal loading (MP: 0.11 kN/mm, PP: 0.10 kN/mm; P = .068). Early fracture displacement was significantly higher following PP osteosynthesis (MP: 0.3 mm, PP: 0.7 mm; P = .030). The superiority of MP was also significant during cyclic loading, represented in a higher failure cycle (MP: 30,684, PP: 5113; P = .009) and in higher failure loads (MP: 95 N, PP: 50 N; P = .024). CONCLUSION: According to our findings, in simple radial head fractures, osteosynthesis with magnesium pins show superior biomechanical properties compared with fractures treated by polylactide pins. Prospective investigations should follow to evaluate clinical outcomes and resorption behavior.


Subject(s)
Radius Fractures , Biomechanical Phenomena , Bone Nails , Fracture Fixation, Internal , Humans , Magnesium , Polyesters , Prospective Studies , Radius Fractures/surgery
11.
J Shoulder Elbow Surg ; 29(9): 1912-1919, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417047

ABSTRACT

BACKGROUND: Displaced fractures of the humeral capitellum are commonly treated operatively and fixed by titanium screws (TSs) either directly or indirectly. In the case of direct transcartilaginous fixation, biodegradable screws with the ability to be countersunk can be favorable regarding implant impingement and cartilage destruction. Hence, the goal of this study was to biomechanically compare headless compression screws made from titanium with a biodegradable equivalent made from a magnesium alloy. METHODS: This biomechanical in vitro study was conducted on 13 pairs of fresh-frozen human cadaveric humeri, in which a standardized Bryan-Morrey type I fracture was fixed using 2 magnesium screws (MSs) or 2 TSs. First, construct stiffness was measured during 10 cycles of static loading between 10 and 50 N. Second, continuous loading was applied at 4 Hz between 10 and 50 N, increasing the maximum load every 10,000 cycles by 25 N until construct failure occurred. This was defined by fragment displacement >3 mm. RESULTS: Comparison of the 2 screw types showed no differences related to construct stiffness (0.50 ± 0.25 kN/mm in MS group and 0.47 ± 0.13 kN/mm in TS group, P = .701), failure cycle (43,944 ± 21,625 and 41,202 ± 16,457, respectively; P = .701), and load to failure (152 ± 53 N and 150 ± 42 N, respectively; P = .915). CONCLUSION: Biomechanical comparison showed that simple capitellar fractures are equally stabilized by headless compression screws made from titanium or a biodegradable magnesium alloy. Therefore, in view of the advantages of biodegradable implants for transcartilaginous fracture stabilization, their clinical application should be considered and evaluated.


Subject(s)
Bone Screws , Fracture Fixation, Internal/instrumentation , Humeral Fractures/surgery , Magnesium , Titanium , Absorbable Implants , Aged , Aged, 80 and over , Biomechanical Phenomena , Humans , Male , Middle Aged
12.
Proc Inst Mech Eng H ; 234(1): 74-80, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31702442

ABSTRACT

For radial head osteosynthesis, biodegradable implants are gaining in importance to minimize cartilage destruction and implant impingement and to supersede implant removal. Since loss of reduction and pseudarthrosis remain challenging complications, new implants should at least provide comparable biomechanical properties as commonly used metal implants. The objective of this study was to compare the treatment by polylactide pins to titanium screws and to quantify the produced cartilage defects. Eight pairs of human cadaver radii with a standardized Mason type II fracture were stabilized either by two 2.0-mm polylactide pins or titanium screws. The produced cartilage defects were quantified using an image analyzing software. Quasi-static loading was performed axially and transversally for 10 cycles each between 10 and 50 N. Afterward, implant loosening was tested by axial loading up to 10,000 cycles, followed by load to failure testing. Polylactide pins showed less construct stiffness under axial (p = 0.017) and transversal (p = 0.012) loading, and one polylactide pins construct failed after two cycles of transversal loading. At axial loading, a high correlation between bone mineral density and construct stiffness was observed among polylactide pins (R = 0.667; p = 0.071), which was not seen among titanium screws (R = 0.262; p = 0.531). No difference in implant loosening was recorded after 10,000 cycles (p = 0.237); however, one polylactide pins construct failed after 30 cycles and failure loads were higher for titanium screws (p=0.017). Polylactide pin produced smaller cartilage defects (p=0.012). In conclusion, simple radial head fractures treated by polylactide pins show less biomechanical stability than treated by titanium screws, particularly in osteoporotic bone which might lead to secondary loss of reduction. Due to smaller cartilage defects and equal properties under continuous loading, polylactide pins might represent a gentle alternative in patients with good bone quality making subsequent implant removal redundant.


Subject(s)
Bone Nails , Bone Screws , Craniocerebral Trauma/surgery , Fractures, Bone/surgery , Mechanical Phenomena , Titanium/metabolism , Biomechanical Phenomena , Craniocerebral Trauma/metabolism , Fractures, Bone/metabolism , Materials Testing
13.
Bone Res ; 6: 4, 2018.
Article in English | MEDLINE | ID: mdl-29507818

ABSTRACT

Skeletal health relies on architectural integrity and sufficient bone mass, which are maintained through a tightly regulated equilibrium of bone resorption by osteoclasts and bone formation by osteoblasts. Genetic studies have linked the gene coding for low-density lipoprotein receptor-related protein1 (Lrp1) to bone traits but whether these associations are based on a causal molecular relationship is unknown. Here, we show that Lrp1 in osteoblasts is a novel regulator of osteoclast activity and bone mass. Mice lacking Lrp1 specifically in the osteoblast lineage displayed normal osteoblast function but severe osteoporosis due to highly increased osteoclast numbers and bone resorption. Osteoblast Lrp1 limited receptor activator of NF-κB ligand (RANKL) expression in vivo and in vitro through attenuation of platelet-derived growth factor (PDGF-BB) signaling. In co-culture, Lrp1-deficient osteoblasts stimulated osteoclastogenesis in a PDGFRß-dependent manner and in vivo treatment with the PDGFR tyrosine kinase inhibitor imatinib mesylate limited RANKL production and led to complete remission of the osteoporotic phenotype. These results identify osteoblast Lrp1 as a key regulator of osteoblast-to-osteoclast communication and bone mass through a PDGF-RANKL signaling axis in osteoblasts and open perspectives to further explore the potential of PDGF signaling inhibitors in counteracting bone loss as well as to evaluate the importance of functional LRP1 gene variants in the control of bone mass in humans.

14.
Sci Rep ; 8(1): 3906, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500380

ABSTRACT

The aim of this study was to evaluate and compare the diagnostic accuracy, the inter-rater agreement and raters' certainty of cone beam computed tomography (CBCT) and radiography for the detection of scaphoid fractures. Our hypothesis is that the CBCT has a higher diagnostic accuracy for scaphoid fractures than radiography. We retrospectively analysed patients who underwent both radiography and CBCT examinations within 4 days to rule out a scaphoid fracture over a 2-year period in our institution. 4 blinded radiologists and orthopaedic surgeons independently rated the images regarding the presence of a scaphoid fracture. The reference standard was evaluated by two radiologists in a consensus reading. Inter-rater correlation was evaluated, pooled sensitivity, specificity, positive and negative predictive values were calculated and compared. 102 patients met the inclusion criteria. 52% of them had a scaphoid fracture. The inter-rater correlation was higher in the CBCT compared to radiography (P < 0.001). Sensitivity, specificity, positive and negative predictive values were higher for CBCT than for radiography (P < 0.019). Observers' fracture classifications showed a higher correlation with the reference standard in the CBCT. Observers' certainty for fracture detection and classification were higher in the CBCT. CBCT shows a higher diagnostic accuracy for scaphoid fractures than radiography.


Subject(s)
Cone-Beam Computed Tomography/methods , Radiography/methods , Radius Fractures/diagnosis , Scaphoid Bone/pathology , Adult , Female , Humans , Male , Prognosis , Radius Fractures/diagnostic imaging , Retrospective Studies , Scaphoid Bone/diagnostic imaging , Scaphoid Bone/injuries
15.
Gait Posture ; 52: 332-337, 2017 02.
Article in English | MEDLINE | ID: mdl-28043054

ABSTRACT

Substantial progress has been made in the operative treatment of Lisfranc fractures, however, the prognosis remains poor. We hypothesized that Lisfranc injuries change the postural control and muscle strength of the lower limb. Both are suggested to correlate with the clinical outcome and quality of life. 17 consecutive patients suffering from a Lisfranc fracture dislocation were registered, underwent open reduction and internal fixation and were followed-up for 50.5±25.7months (Mean±SDM). Biomechanical analysis of muscle strength capacities, postural control and plantar pressure distribution was assessed >6 month postoperatively. Results were correlated to clinical outcome (AOFAS, FFI, Pain, SF-36). The isokinetic assessment revealed a significant reduction in plantar flexor and dorsal extensor peak torque of the injured limb compared to the uninjured limb. The dorsal extensor peak torque thereby correlated well with clinical outcome. Altered postural control was evident by a significant reduction in unilateral stance time, from which we calculated a strong correlation between stance time and the isokinetic strength measurement. Plantar pressure measurements revealed a significant reduction in peak pressure under the midfoot and of Force-Time Integral beneath the second metatarsal. Sufficient rehabilitation is crucial to the clinical outcome following anatomical open reduction of Lisfranc fracture-dislocation. The present study supports a rehabilitation approach focussing on restoring proprioception and calf muscular strength including isometric exercises of the dorsal extensors.


Subject(s)
Fractures, Bone/surgery , Metatarsal Bones/injuries , Postural Balance , Adult , Bone Wires , Female , Fracture Fixation, Internal , Fractures, Bone/rehabilitation , Humans , Male , Muscle Strength/physiology , Pressure , Quality of Life
16.
Bone ; 62: 90-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24440515

ABSTRACT

A number of unexpected molecules were recently identified as products of osteoblasts, linking bone homeostasis to systemic energy metabolism. Here we identify the lipolytic enzyme hepatic lipase (HL, encoded by Lipc) as a novel cell-autonomous regulator of osteoblast function. In an unbiased genome-wide expression analysis, we find Lipc to be highly induced upon osteoblast differentiation, verified by quantitative Taqman analyses of primary osteoblasts in vitro and of bone samples in vivo. Functionally, loss of HL in vitro leads to increased expression and secretion of osteoprotegerin (OPG), while expression of some osteoblast differentiation makers is impaired. When challenging energy metabolism in a diet-induced obesity (DIO) study, lack of HL leads to a significant increase in bone formation markers and a decrease in bone resorption markers. Accordingly, in the DIO setting, we observe in Lipc(-/-) animals but not in wild-type controls a significant increase in lumbar vertebral trabecular bone mass and formation rate as well as in femoral trabecular bone mass and cortical thickness. Taken together, we demonstrate that HL expressed by osteoblasts has an impact on osteoblast OPG expression and that lack of HL leads to increased bone mass in DIO. These data provide a novel and completely unexpected molecular link in the complex interplay of osteoblasts and systemic energy metabolism.


Subject(s)
Bone Remodeling , Lipase/metabolism , Obesity/enzymology , Obesity/pathology , Osteoblasts/enzymology , Osteoblasts/pathology , Animals , Biomarkers/blood , Biomarkers/urine , Cell Differentiation , Cells, Cultured , Diet, High-Fat , Feeding Behavior , Femur/diagnostic imaging , Femur/pathology , Lipase/deficiency , Lumbar Vertebrae/pathology , Male , Mice, Inbred C57BL , Organ Size , Osteoprotegerin/metabolism , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...