Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 76: 364-378, 2017 09.
Article in English | MEDLINE | ID: mdl-28763689

ABSTRACT

Beta-Glucocerebrosidase (GBA) is a lysosomal protein that is responsible for the hydrolysis of glycosylceramide into glucose and ceramide. Mutations in GBA lead to the accumulation of glycosylceramide in the lysosome causing an enlargement of the spleen and the liver and skeletal deformations. This disease is called Gaucher Disease. Enzyme replacement therapies and substrate reduction methods that are used to treat Gaucher Disease fail when the disease is neuropathic because they fail to pass the blood brain barrier. In this work, QSAR, virtual screening, docking and molecular dynamics simulations were performed to obtain a set of compounds that might be pharmacological chaperones for GBA. ZINC Database was screened using ligand-based and structure-based pharmacophore hypotheses. After docking of these molecules and filtration based on druglikeness, top ranking ligands were identified and their binding stabilities were examined using MD simulations. As a result, seven new compounds that can potentially cross the blood brain barrier were proposed as GBA inhibitors. Three of the seven compounds have a tricyclic pyrido-thieno-pyrimidine scaffold and one has the dioxino quinolone scaffold. Derivatives of these scaffolds have been reported as antiallergic agents, antibiotic and anticancer compounds. These results offer a new approach for the development of new drugs against neuropathic Gaucher Disease Type 2 and Type 3.


Subject(s)
Molecular Chaperones/chemistry , Pharmaceutical Preparations/chemistry , Binding Sites , Catalytic Domain , Computer Simulation , Drug Discovery , Gaucher Disease , Glucosylceramidase/chemistry , Glucosylceramidase/metabolism , Humans , Ligands , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...