Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 78(23): 8331-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23001657

ABSTRACT

The protein RpoS is responsible for mediating cell survival during the stationary phase by conferring cell resistance to various stressors and has been linked to biofilm formation. In this study, the role of the rpoS gene in Escherichia coli O157:H7 biofilm formation and survival in water was investigated. Confocal scanning laser microscopy of biofilms established on coverslips revealed a nutrient-dependent role of rpoS in biofilm formation, where the biofilm biomass volume of the rpoS mutant was 2.4- to 7.5-fold the size of its rpoS(+) wild-type counterpart in minimal growth medium. The enhanced biofilm formation of the rpoS mutant did not, however, translate to increased survival in sterile double-distilled water (ddH(2)O), filter-sterilized lake water, or unfiltered lake water. The rpoS mutant had an overall reduction of 3.10 and 5.30 log(10) in sterile ddH(2)O and filter-sterilized lake water, respectively, while only minor reductions of 0.53 and 0.61 log(10) in viable counts were observed for the wild-type form in the two media over a 13-day period, respectively. However, the survival rates of the detached biofilm-derived rpoS(+) and rpoS mutant cells were comparable. Under the competitive stress conditions of unfiltered lake water, the advantage conferred by the presence of rpoS was lost, and both the wild-type and knockout forms displayed similar declines in viable counts. These results suggest that rpoS does have an influence on both biofilm formation and survival of E. coli O157:H7 and that the advantage conferred by rpoS is contingent on the environmental conditions.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Escherichia coli O157/physiology , Gene Expression Regulation, Bacterial , Microbial Viability , Sigma Factor/metabolism , Bacterial Proteins/genetics , Culture Media/chemistry , Escherichia coli O157/genetics , Escherichia coli O157/growth & development , Gene Deletion , Sigma Factor/genetics , Water Microbiology
2.
J Microbiol Methods ; 82(1): 19-27, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20359508

ABSTRACT

Sphingomonas species can be found ubiquitously in the environment and can be frequently found in surface biofilms. Some Sphingomonas strains are well known for metabolizing complex organic pollutants but some are opportunistic human pathogens. Despite the importance of the Sphingomonas species, a reliable system to isolate this group of bacteria from the environment has not been developed. In this study, a combined streptomycin-piperacillin selective growth medium/polymerase chain reaction (PCR) detection approach is developed to isolate and identify the Sphingomonas bacteria. A total of 72 known Sphingomonas strains (including 21 different Sphingomonas species type strains) and 14 non-Sphingomonas species were tested using a new Sphingomonas-specific growth medium containing 100 and 50 microg/ml streptomycin and piperacillin, respectively. All the Sphingomonas strains showed positive growth on the selective medium and no growth was shown by the non-Sphingomonas species. In addition, two sets of PCR primers targeting the serine palmitoyltransferase gene (spt), a crucial sphingolipid biosynthesis gene, were developed. With the exception of the Sphingomonas subarctica type strain, 71 of the 72 known Sphingomonas samples were amplified positively by either one or both of the spt-specific primers. None of the non-Sphingomonas bacteria were amplified by the spt primers. To verify the effectiveness of this novel approach for use in environmental screening applications the Sphingomonas selective medium was used to isolate 165 potential Sphingomonas isolates, including 101 yellow, 4 orange and 58 unpigmented isolates, from the influent water and biofilm samples of a pulp and paper mill in Northwestern Ontario. Screening of these isolates with the two Sphingomonas spt-PCR primer sets showed that 98% of the yellow isolates and 100% of the orange isolates were positive to the spt-PCR test. None of the unpigmented isolates was positive to the spt-PCR assay. The 16S rDNA of 17% of the spt+ve and -ve isolates were sequenced and analyzed. All of the yellow and orange pigmented isolates were Sphingomonas while none of the unpigmented isolates were Sphingomonas. REP-PCR was performed on 79 Sphingomonas samples randomly selected from the paper mill and hospital isolates and showed that a diverse group of Sphingomonas can be grown or isolated by our Sphingomonas selective growth medium. Therefore, by using the streptomycin-piperacillin selective growth medium in combination with the colour pigmentation and the positive spt-PCR reactions of the isolates, a diverse population of Sphingomonas strains can be isolated and identified from complex microbial communities with high accuracy.


Subject(s)
Bacteriological Techniques/methods , Culture Media/metabolism , Environmental Microbiology , Polymerase Chain Reaction/methods , Sphingomonas/isolation & purification , Bacterial Proteins/genetics , Molecular Sequence Data , Phylogeny , Piperacillin/pharmacology , Serine C-Palmitoyltransferase/genetics , Sphingomonas/classification , Sphingomonas/genetics , Sphingomonas/metabolism , Streptomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...