Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276543

ABSTRACT

Plant extract fermentation is widely employed to enhance the nutritional and pharmaceutical value of functional foods. Polygonum cuspidatum (Pc) contains flavonoids, anthraquinones, and stilbenes, imparting protective effects against inflammatory diseases, cancer, diabetes, and cardiovascular diseases. However, the effects of fermented Pc on skeletal muscle strength remain unexplored. In this study, we generated fermented Pc using a complex of microorganisms containing Lactobacillus spp. (McPc) and assessed its effects on muscle strength and motor function in mice. Compared to unfermented Pc water extract, elevated levels of emodin and resveratrol were noted in McPc. This was identified and quantified using UPLC-QTOF/MS and HPLC techniques. Gene expression profiling through RNA-seq and quantitative RT-PCR revealed that McPc administration upregulated the expression of genes associated with antioxidants, glycolysis, oxidative phosphorylation, fatty acid oxidation, and mitochondrial biogenesis in cultured C2C12 myotubes and the gastrocnemius muscle in mice. McPc significantly improved skeletal muscle strength, motor coordination, and traction force in mice subjected to sciatic neurectomy and high-fat diet (HFD). McPc administration exhibited more pronounced improvement of obesity, hyperglycemia, fatty liver, and hyperlipidemia in HFD mice compared to control group. These findings support the notion that emodin and resveratrol-enriched McPc may offer health benefits for addressing skeletal muscle weakness.


Subject(s)
Emodin , Fallopia japonica , Mice , Animals , Emodin/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Anthraquinones , Muscle, Skeletal/metabolism
2.
Nutrients ; 14(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35406121

ABSTRACT

Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4-TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4-TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.


Subject(s)
Emodin , Fallopia japonica , Lung Neoplasms , Animals , Cachexia/drug therapy , Cachexia/etiology , Cachexia/prevention & control , Emodin/pharmacology , Emodin/therapeutic use , Humans , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Mammals/genetics , Mammals/metabolism , Mice , Nuclear Proteins/genetics , Parathyroid Hormone-Related Protein/genetics , Plant Extracts , RNA, Messenger/metabolism , Transcription Factor 4/genetics , Twist-Related Protein 1/genetics
3.
Int J Mol Sci ; 19(10)2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30321984

ABSTRACT

Reduced therapeutic efficacy of sorafenib, a first-generation multikinase inhibitor, is often observed during the treatment of advanced hepatocellular carcinoma (HCC). Emodin is an active component of Chinese herbs, and is effective against leukemia, lung cancer, colon cancer, pancreatic cancer, and HCC; however, the sensitizing effect of emodin on sorafenib-based HCC therapy has not been evaluated. Here, we demonstrate that emodin significantly improved the anti-cancer effect of sorafenib in HCC cells, such as HepG2, Hep3B, Huh7, SK-HEP-1, and PLC/PRF5. Mechanistically, emodin inhibits sterol regulatory element-binding protein-2 (SREBP-2) transcriptional activity, which suppresses cholesterol biosynthesis and oncogenic protein kinase B (AKT) signaling. Additionally, attenuated cholesterol synthesis and oncogenic AKT signaling inactivated signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. Furthermore, emodin synergistically increased cell cycle arrest in the G1 phase and apoptotic cells in the presence of sorafenib. Animal models xenografted with HepG2 or SK-HEP-1 cells also showed that the combination of emodin and sorafenib was sufficient to inhibit tumor growth. Overall, these results suggested that the combination of emodin and sorafenib may offer a potential therapy for patients with advanced HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Cholesterol/metabolism , Emodin/administration & dosage , Liver Neoplasms/drug therapy , Sorafenib/administration & dosage , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Emodin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Sorafenib/pharmacology , Sterol Regulatory Element Binding Protein 2/genetics , Xenograft Model Antitumor Assays
4.
Molecules ; 23(1)2017 Dec 24.
Article in English | MEDLINE | ID: mdl-29295560

ABSTRACT

Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB), also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK), which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX)-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.


Subject(s)
Adenylate Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Adenylate Kinase/metabolism , Cell Line, Tumor , DNA Damage , Drug Synergism , Enzyme Activation/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Methotrexate/pharmacology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Stress, Physiological/drug effects
5.
Plant Physiol Biochem ; 49(4): 427-34, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21300550

ABSTRACT

Three 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria were isolated from West Coast soil of Yellow Sea, Incheon, South Korea and evaluated for their efficiency in improving red pepper plant growth under salt stress. The strains RS16, RS656 and RS111 were identified by 16S rRNA gene sequencing as Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba, respectively. Two hour exposure of 100, 150 and 200 mM NaCl stress on 8 day old red pepper seedlings caused 44, 64 and 74% increase ethylene production, while at 150 mM NaCl stress, inoculation of B. licheniformis RS656, Z. alba RS111, and Br. iodinum RS16 reduces ethylene production by 44, 53 and 57%, respectively. Similarly, 3 week old red pepper plants were subjected to salt stress for two weeks and approximately ∼50% reduction in growth recorded at 150 mM NaCl stress compared to negative control whereas bacteria inoculation significantly increase the growth compared to positive control. Salt stress also caused 1.3-fold reduction in the root/shoot dry weight ratio compared to the absence of salt while bacteria inoculation retained the biomass allocation similar to control plants. The salt tolerance index (ratio of biomass of salt stressed to non-stressed plant) was also significantly increased in inoculated plants compared to non-inoculated. Increase nutrient uptakes under salt stress by red pepper further evident that bacteria inoculation ameliorates salt stress effect. In summary, this study indicates that the use of ACC deaminase-producing halotolerant bacteria mitigates the salt stress by reducing salt stress-induced ethylene production on growth of red pepper plants.


Subject(s)
Bacteria/enzymology , Capsicum/physiology , Carbon-Carbon Lyases/metabolism , Ethylenes/biosynthesis , Salt Tolerance , Sodium Chloride/pharmacology , Stress, Physiological , Bacterial Proteins/metabolism , Biological Transport , Biomass , Capsicum/growth & development , Capsicum/microbiology , Plant Roots , Plant Shoots , Republic of Korea , Seedlings/growth & development , Seedlings/microbiology , Seedlings/physiology
6.
J Microbiol ; 47(2): 147-55, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19412597

ABSTRACT

Diazotrophic bacteria isolated from the rhizosphere of Chinese cabbage were assessed for other plant growth promoting characteristics viz., production of IAA, ethylene, ACC deaminase, phosphate solubilization, and gnotobiotic root elongation. Their effect on inoculation to Chinese cabbage was also observed under growth chamber conditions. A total of 19 strains that showed higher nitrogenase activity identified by 16S rRNA gene sequence analysis were found to be the members of the genera Pseudomonas and Agrobacterium belonging to alpha- and gamma-Proteobacteria groups. These strains were also efficient in producing IAA and ACC deaminase though they produced low levels of ethylene and no phosphate solubilization. In addition, inoculation of selected diazotrophic bacterial strains significantly increased seedling length, dry weight, and total nitrogen when compared to uninoculated control. The colonization of crop plants by diazotrophic bacteria can be affected by many biotic and abiotic factors, and further studies are oriented towards investigating the factors that could influence the establishment of a selected bacterial community.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Brassica/microbiology , Nitrogen Fixation , Plant Growth Regulators/metabolism , Soil Microbiology , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/metabolism , Brassica/growth & development , Ethylenes/metabolism , Fertilizers/analysis , Indoleacetic Acids/metabolism , Molecular Sequence Data , Phylogeny , Plant Roots/growth & development , Plant Roots/microbiology
7.
Appl Microbiol Biotechnol ; 78(6): 1033-43, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18320187

ABSTRACT

The localization of bacterial cell, pattern of colonization, and survival of Methylobacterium suomiense CBMB120 in the rhizosphere of rice and tomato plants were followed by confocal laser scanning, scanning electron microscopy, and selective plating. M. suomiense CBMB120 was tagged with green fluorescent protein (gfp), and inoculation was carried out through seed source. The results clearly showed that the gfp marker is stably inherited and is expressed in planta allowing for easy visualization of M. suomiense CBMB120. The colonization differed in rice and tomato -- intercellular colonization of surface-sterilized root sections was visible in tomato but not in rice. In both rice and tomato, the cells were visible in the substomatal chambers of leaves. Furthermore, the strain was able to compete with the indigenous microorganisms and persist in the rhizosphere of tomato and rice, assessed through dilution plating on selective media. The detailed ultra-structural study on the rhizosphere colonization by Methylobacterium put forth conclusively that M. suomiense CBMB120 colonize the roots and leaf surfaces of the plants studied and is transmitted to the aerial plant parts from the seed source.


Subject(s)
Green Fluorescent Proteins/metabolism , Methylobacterium/growth & development , Oryza/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Solanum lycopersicum/microbiology , Green Fluorescent Proteins/genetics , Methylobacterium/cytology , Methylobacterium/genetics , Methylobacterium/metabolism , Microscopy, Electron, Scanning , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...