Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Microbiol ; 79(1): 18, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34905116

ABSTRACT

Two novel bacteria species designated Marseille-Q1000T and Marseille-Q0999T were isolated from urine samples of patients in Sokoto, Northwest-Nigeria. They were Gram-positive bacteria and belong to two different genera, Bhargavaea and Dietzia. The genome size and G + C content of Marseille-Q1000T and Marseille-Q0999T were 3.07 and 3.51 Mbp with 53.8 and 71.0 mol% G + C content, respectively. The strains exhibited unique phenotypic and genomic features that are substantially different from previously known bacterial species with standing in nomenclature. On the basis of the phenotypic, phylogenetic and genomic characteristics, strains Marseille-Q0999T (= CSURQ0999 = DSM 112394) and Marseille-Q1000T (= CSURQ1000 = DSM 112384) were proposed as the type strains of Bhargavaea massiliensis sp. nov., and Dietzia massiliensis sp. nov., respectively.


Subject(s)
Planococcaceae , DNA, Bacterial/genetics , Humans , Nigeria , Phylogeny , RNA, Ribosomal, 16S/genetics
3.
J Microbiol ; 58(5): 377-386, 2020 May.
Article in English | MEDLINE | ID: mdl-32281049

ABSTRACT

The study of the human gut microbiome is essential in microbiology and infectious diseases as specific alterations in the gut microbiome might be associated with various pathologies, such as chronic inflammatory disease, intestinal infection and colorectal cancer. To identify such dysregulations, several strategies are being used to create a repertoire of the microorganisms composing the human gut microbiome. In this study, we used the "microscomics" approach, which consists of creating an ultrastructural repertoire of all the cell-like objects composing stool samples from healthy donors using transmission electron microscopy (TEM). We used TEM to screen ultrathin sections of 8 resin-embedded stool samples. After exploring hundreds of micrographs, we managed to elaborate ultrastructural categories based on morphological criteria or features. This approach explained many inconsistencies observed with other techniques, such as metagenomics and culturomics. We highlighted the value of our culture-independent approach by comparing our microscopic images to those of cultured bacteria and those reported in the literature. This study helped to detect "minimicrobes" Candidate Phyla Radiation (CPR) for the first time in human stool samples. This "microscomics" approach is non-exhaustive but complements already existing approaches and adds important data to the puzzle of the microbiota.


Subject(s)
Bacteria , Feces/microbiology , Gastrointestinal Microbiome , Bacteria/classification , Bacteria/ultrastructure , Healthy Volunteers , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...