Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 98(12): 6921-6930, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31504907

ABSTRACT

The current study was performed to develop dynamic quality and shelf-life prediction models using selected index for packaged chicken meat during storage. Generally, the results showed that meat deterioration, with respect to the different quality indices considered in the investigation, proceeds with increasing temperature and storage time. Highly significant (P ≤ 0.01) correlations were obtained between TPC (total plate count) and SI (sensory index) (r = -0.94 to -0.97), coliforms and SI (r = -0.89 to -0.95), and LAB (lactic acid bacteria) and SI (r = -0.93 to -0.98). However, only the microbiological spoilage regarding TPC, whose values ranged from 7.0 to 8.0 log CFU/g under all investigated temperature conditions, were in compliance with the end of sensory shelf-life defined at SI = 5. To develop dynamic quality prediction model, 4 isothermal (0, 4, 10, and 15°C) experiments in 2 batches were performed for TPC evaluation. Growth data were fitted in the Baranyi and Roberts and quadratic polynomial model as the primary and secondary models, respectively. The model was validated under dynamic conditions (0-8°C scenario with periodic 12-h changes). The accuracy and bias factors were estimated to be 1.045 and 0.991 for fluctuating conditions and 1.016 and 1.015 for real-time conditions, respectively, suggesting good applicability of the model. The remaining shelf-life estimation model developed based on mean kinetic temperature showed an even decrease of shelf-life under dynamic conditions in time. The developed model scan can be used for effective monitoring of packaged chicken meat freshness and shelf-life during distribution with temperature fluctuation.


Subject(s)
Food Packaging/methods , Food Preservation/methods , Meat/analysis , Animals , Chickens , Food Microbiology , Meat/microbiology , Models, Theoretical
2.
Poult Sci ; 97(12): 4384-4391, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30085286

ABSTRACT

Storage experiments were conducted to study the impacts of the environmental factors (temperature (T) (°C), relative humidity (RH) (%), and air flow velocity (VEL) (m/s)) on the hen egg quality indices and to develop kinetic model(s) for freshness prediction. VEL had negligible effect on relative weight loss (RWL). All factors had significant effect on Haugh unit (HU) but only T impacted S-ovalbumin content (SO). Fitted regression lines for the RWL and the HU had determination coefficient (R2) of 0.996 and 0.95, respectively. The HU equation reflected impacts of all factors, and the impact of temperature shift-up increases the HU decrease, where the impact decreases with RH and increases with flow velocity. Kinetic model for SO was developed using isothermal (5, 10, 20, 25, and 28.5°C) conditions and validated under dynamic (10 to 20 and 10 to 28.5°C) conditions. The accuracy and bias factor values were 1.091 and 0.917 at 10 to 20°C and 1.206 and 1.204 at 10 to 28.5°C, respectively, which indicates that the SO model performed well. The SO model can be used along with the HU model (as the HU model can reflect the combined effect of temperature, humidity, and air flow velocity) to predict hen egg freshness at 5 to 28.5°C storage condition.


Subject(s)
Air Movements , Eggs/analysis , Food Storage , Humidity , Temperature , Animals , Chickens , Kinetics , Linear Models , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...