Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508934

ABSTRACT

RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set. MATERIALS AND METHODS: Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center. RESULTS: 31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models. CONCLUSION: The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.

2.
Heliyon ; 10(1): e23584, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173524

ABSTRACT

Background: Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are commonly seen spinal infectious diseases. Both types can lead to vertebral destruction, kyphosis, and long-term neurological deficits if not promptly diagnosed and treated. Therefore, accurately diagnosis is crucial for personalized therapy. Distinguishing between PS and BS in everyday clinical settings is challenging due to the similarity of their clinical symptoms and imaging features. Hence, this study aims to evaluate the effectiveness of a radiomics nomogram using magnetic resonance imaging (MRI) to accurately differentiate between the two types of spondylitis. Methods: Clinical and MRI data from 133 patients (2017-2022) with pathologically confirmed PS and BS (68 and 65 patients, respectively) were collected. We have divided patients into training and testing cohorts. In order to develop a clinical diagnostic model, logistic regression was utilized to fit a conventional clinical model (M1). Radiomics features were extracted from sagittal fat-suppressed T2-weighted imaging (FS-T2WI) sequence. The radiomics features were preprocessed, including scaling using Z-score and undergoing univariate analysis to eliminate redundant features. Furthermore, the Least Absolute Shrinkage and Selection Operator (LASSO) was employed to develop a radiomics score (M2). A composite model (M3) was created by combining M1 and M2. Subsequently, calibration and decision curves were generated to evaluate the nomogram's performance in both training and testing groups. The diagnostic performance of each model and the indication was assessed using the receiver operating curve (ROC) with its area under the curve (AUC). Finally, we used the SHapley Additive exPlanations (SHAP) model explanations technique to interpret the model result. Results: We have finally selected 9 significant features from sagittal FS-T2WI sequences. In the differential diagnosis of PS and BS, the AUC values of M1, M2, and M3 in the testing set were 0.795, 0.859, and 0.868. The composite model exhibited a high degree of concurrence with the ideal outcomes, as evidenced by the calibration curves. The nomogram's possible clinical application values were indicated by the decision curve analysis. By using SHAP values to represent prediction outcomes, our model's prediction results are more understandable. Conclusions: The implementation of a nomogram that integrates MRI and clinical data has the potential to significantly enhance the accuracy of discriminating between PS and BS within clinical settings.

3.
Eur J Med Res ; 28(1): 577, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071384

ABSTRACT

BACKGROUND: Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies. PURPOSE: This study aims to evaluate the effectiveness of radiomics and machine learning techniques based on magnetic resonance imaging (MRI) to differentiate between CAE and BM. METHODS: We retrospectively analyzed MRI images of 130 patients (30 CAE and 100 BM) from Xinjiang Medical University First Affiliated Hospital and The First People's Hospital of Kashi Prefecture, between January 2014 and December 2022. The dataset was divided into training (91 cases) and testing (39 cases) sets. Three dimensional tumors were segmented by radiologists from contrast-enhanced T1WI images on open resources software 3D Slicer. Features were extracted on Pyradiomics, further feature reduction was carried out using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator (LASSO). Finally, we built five machine learning models, support vector machine, logistic regression, linear discrimination analysis, k-nearest neighbors classifier, and Gaussian naïve bias and evaluated their performance via several metrics including sensitivity (recall), specificity, positive predictive value (precision), negative predictive value, accuracy and the area under the curve (AUC). RESULTS: The area under curve (AUC) of support vector classifier (SVC), linear discrimination analysis (LDA), k-nearest neighbors (KNN), and gaussian naïve bias (NB) algorithms in training (testing) sets are 0.99 (0.94), 1.00 (0.87), 0.98 (0.92), 0.97 (0.97), and 0.98 (0.93), respectively. Nested cross-validation demonstrated the robustness and generalizability of the models. Additionally, the calibration plot and decision curve analysis demonstrated the practical usefulness of these models in clinical practice, with lower bias toward different subgroups during decision-making. CONCLUSION: The combination of radiomics and machine learning approach based on contrast enhanced T1WI images could well distinguish CAE and BM. This approach holds promise in assisting doctors with accurate diagnosis and clinical decision-making.


Subject(s)
Brain Neoplasms , Echinococcosis , Humans , Retrospective Studies , Echinococcosis/diagnostic imaging , Brain Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...