Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-37259384

ABSTRACT

Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) has been traditionally used as a medicinal herb by folk healers in Thailand with rare evidence-based support. Hepatic cytochrome P450s (CYPs450) are well known as the drug-metabolizing enzymes that catalyze all drugs and toxicants. In this study, we investigated the mRNA levels of six clinically important CYPs450, i.e., CYP1A2, 3A2, 2C11, 2D1, 2D2, and 2E1, in rats given LS extracts. Seventy Wistar rats were randomized into seven groups (n = 10). Each group was given LS stem ethanol (SE) and leaf water (LW) extracts orally at doses of 300, 2000, and 5000 mg/kg body weight (mg/kg.bw) for twenty-eight consecutive days. After treatment, the expression of CYPs450 genes was measured using quantitative real-time PCR. The results revealed that SE and LW, which contained quercetin and gallic acid, promoted the upregulation of all CYPs450. Almost all CYPs450 genes were downregulated in all male LW-treated rats but upregulated in female-treated groups, suggesting that CYP gene expressions in LS-treated rats were influenced by gender. Moderate and high doses of the LS extracts had a tendency to induce six CYP450s' transcription levels in both rat genders. CYP2E1 gene showed a unique expression level in male rats receiving SE at a dose of 2000 mg/kg.bw, whereas a low dose of 300 mg/kg.bw was found in the LW-treated female group. As a result, our findings suggest that different doses of LS extracts can moderate the varying mRNA expression of clinically relevant CYP genes. In this study, we provide information about CYP induction and inhibition in vivo, which could be a desirable condition for furthering the practical use of LS extracts in humans.

2.
Toxicol Rep ; 9: 1968-1976, 2022.
Article in English | MEDLINE | ID: mdl-36518435

ABSTRACT

Damnacanthal is an anthraquinone, extracted, and purified from the root of Morinda citrifolia in Thailand. This study aimed to measure acute oral toxicity and to investigate the anticancer activity of damnacanthal in colorectal tumorigenesis. We found that the growth of human colorectal cancer cells was inhibited by damnacanthal in a dose- and a time-dependent manner. The growth inhibitory effect of damnacanthal was better than that of 5-FU used as a positive control in colorectal cancer cells, along with the downregulation of cell cycle protein cyclin D1. Similarly, an oral treatment of damnacanthal effectively inhibited the growth of colorectal tumor xenografts in nude mice, which was approximately 2-3-fold higher as compared to 5-FU by tumor size as well as expression of bioluminescence. Furthermore, the study of acute oral toxicity in mice exhibited a relatively low toxicity of damnacanthal with a LD50 cut-off value of 2500 mg/kg according to OECD Guideline 423. These results reveal the potential therapeutic activity of a natural damnacanthal compound as an anti-colorectal cancer drug.

3.
Article in English | MEDLINE | ID: mdl-36452140

ABSTRACT

Cholangiocarcinoma (CCA) is a very aggressive tumor. The development of a new therapeutic drug for CCA is required. This study aims to evaluate the antitumor effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana (Cannabis sativa), and cannabinol (CBN), a minor, low-psychoactive cannabinoid, on CCA cells and xenograft mice. THC and CBN were isolated, and their identities were confirmed by comparing 1H- and 13C-NMR spectra and mass spectra with a database. Cell proliferation, cell migration, and cell apoptosis assays were performed in HuCCT1 human CCA cells treated with THC or CBN. The phosphorylation of signaling molecules in HuCCT1 cells was detected. To determine the effects of THC and CBN in an animal model, HuCCT1 cells were inoculated subcutaneously into nude mice. After the tumors reached an appropriate size, the mice were treated with THC or CBN for 21 days. Tumor volumes were monitored and calculated. The 1H- and 13C-NMR data of THC and CBN were almost identical to those reported in the literature. THC and CBN significantly inhibited cell proliferation and migration and induced apoptosis in HuCCT1 cells. The phosphorylation of AKT, GSK-3α/ß, and ERK1/2 decreased in HuCCT1 cells treated with THC or CBN. CCA xenograft mice treated with THC showed significantly slower tumor progression and smaller tumor volumes than control mice. THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways. These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.

5.
Colloids Surf B Biointerfaces ; 196: 111270, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32777659

ABSTRACT

Cisplatin (Cis) is a widely used chemotherapeutic drug for cancer treatment. However, toxicities and drug resistance limit the use of cisplatin. This study was aimed to improve cisplatin delivery using a targeting strategy to reduce the toxicity. In the present study, combinations of poly lactic-co-glycolic acids (PLGA) and liposomes were used as carriers for cisplatin delivery. In addition, to target the nanoparticle towards tumor cells, the liposome was conjugated with Avastin®, an anti-VEGF antibody. Cisplatin was loaded into PLGA using the double emulsion solvent evaporation method and further encapsulated in an Avastin® conjugated liposome (define herein as L-PLGA-Cis-Avastin®). Their physicochemical properties, including particle size, ζ-potential, encapsulation efficiency and drug release profiles were characterized. In addition, a study of the efficiency of tumor targeted drug delivery was conducted with cervical tumor bearing mice via intravenous injection. The therapeutic effect was examined in a 3D spheroid of SiHa cell line and SiHa cells bearing mice. The L-PLGA-Cis-Avastin® prompted a significant effect on cell viability and triggered cytotoxicity of SiHa cells. A cell internalization study confirmed that the L-PLGA-Cis-Avastin® had greater binding specificity to SiHa cells than those of L-PLGA-Cis or free drug, resulting in enhanced cellular uptake. Tumor targeting specificity was finally confirmed in xenograft tumors. Taken together, this nanoparticle could serve as a promising specific targeted drug for cervical cancer treatment.


Subject(s)
Nanoparticles , Uterine Cervical Neoplasms , Animals , Cell Line, Tumor , Cisplatin , Drug Carriers , Female , Glycols , Humans , Liposomes , Mice , Particle Size , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...