Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 19(13): e202301145, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38703395

ABSTRACT

Prussian blue analogues (PBAs) have gained tremendous attention as promising low-cost electrochemically-tunable electrode materials, which can accommodate large Na+ ions with attractive specific capacity and charge-discharge kinetics. However, poor cycling stability caused by lattice strain and volume change remains to be improved. Herein, metal-doping strategy has been demonstrated in FeNiHCF, Na1.40Fe0.90Ni0.10[Fe(CN)6]0.85 ⋅ 1.3H2O, delivering a capacity as high as 148 mAh g-1 at 10 mA g-1. At an exceptionally high rate of 25.6 A g-1, a reversible capacity of ~55 mAh g-1 still can be obtained with a very small capacity decay rate of 0.02 % per cycle for 1000 cycles, considered one of the best among all metal-doped PBAs. This exhibits the stabilizing effect of Ni doping which enhances structural stability and long-term cyclability. In situ synchrotron X-ray diffraction reveals an extremely small (~1 %) change in unit cell parameters. The Ni substitution is found to increase the electronic conductivity and redox activity, especially at the low-spin (LS) Fe center due to inductive effect. This larger capacity contribution from LS Fe2+C6/Fe3+C6 redox couple is responsible for stable high-rate capability of FeNiHCF. The insight gained in this work may pave the way for the design of other high-performance electrode materials for sustainable sodium-ion batteries.

2.
Polymers (Basel) ; 14(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35215727

ABSTRACT

Lignin is the most abundant natural aromatic polymer, especially in plant biomass. Lignin-derived phenolic compounds can be processed into high-value liquid fuel. This study aimed to determine the yield of lignin by the microwave-assisted solvent extraction method and to characterize some essential properties of the extracted lignin. Rubberwood sawdust (Hevea brasiliensis) was extracted for lignin with an organic-based solvent, either ethanol or isopropanol, in a microwave oven operating at 2450 MHz. Two levels of power of microwave, 100 W and 200 W, were tested as well as five extraction times (5, 10, 15, 20, 25, and 30 min). The extracted lignin was characterized by Klason lignin, Fourier transform infrared spectroscopy (FT-IR), 2D HSQC NMR, Ultraviolet-visible spectrophotometry (UV-vis), and Bomb calorimeter. The results showed that the yield of extracted lignin increased with the extraction time and power of the microwave. In addition, the extraction yield with ethanol was higher than the yield with isopropanol. The highest yield was 6.26 wt.%, with ethanol, 30 min extraction time, and 200 W microwave power.

SELECTION OF CITATIONS
SEARCH DETAIL
...