Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Food Chem ; 452: 139549, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38762939

ABSTRACT

The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 µg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.


Subject(s)
Cadmium , Food Contamination , Limit of Detection , Luminescent Measurements , Cadmium/analysis , Food Contamination/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Animals , Luminescence , Point-of-Care Testing
2.
Micromachines (Basel) ; 15(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675366

ABSTRACT

The Micromachines Editorial Office retracts the article "Preparation and analysis of structured color Janus droplets based on microfluidic 3D droplet printing" [...].

3.
Biosens Bioelectron ; 257: 116338, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677017

ABSTRACT

Foodborne pathogens have a substantial bearing on food safety and environmental health. The development of automated, portable and compact devices is essential for the on-site and rapid point-of-care testing (POCT) of bacteria. Here, this work developed a micro-automated microfluidic device for detecting bacteria, such as Escherichia coli (E. coli) O157:H7, using a seashell-like microfluidic chip (SMC) as an analysis and mixing platform. The automated device integrates a colorimetric/fluorescent system for the metabolism of copper (Cu2+) by E. coli affecting o-phenylenediamine (OPD) for concentration analysis. A smartphone was used to read the RGB data of the chip reaction reservoir to detect colorimetric and fluorescence patterns in the concentration range of 102-106 CFU mL-1. The automated device overcomes the low efficiency and tedious steps of traditional detection and enables high-precision automated detection that can be applied to POCT in the field, providing an ideal solution for broadening the application of E. coli detection.


Subject(s)
Biosensing Techniques , Colorimetry , Copper , Equipment Design , Escherichia coli O157 , Food Microbiology , Lab-On-A-Chip Devices , Point-of-Care Testing , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Escherichia coli O157/isolation & purification , Humans , Colorimetry/instrumentation , Copper/chemistry , Smartphone/instrumentation , Foodborne Diseases/microbiology , Phenylenediamines/chemistry , Escherichia coli Infections/microbiology , Food Contamination/analysis
4.
Micromachines (Basel) ; 14(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37893348

ABSTRACT

The microfluidic technique for the three-dimensional (3D) printing of Janus droplets offers precise control over their size, orientation, and positioning. The proposed approach investigates the impact of variables such as the volume ratio of the oil phase, droplet size, and the ratio of nonionic surfactants on the dimensions of the structured color apertures of Janus droplets. The findings reveal that structured color apertures modulate accurately. Furthermore, fabricating color patterns facilitates cat, fish, and various other specific shapes using structured color Janus droplets. The color patterns exhibit temperature-sensitive properties, enabling them to transition between display and concealed states. Herein, the adopted microfluidic technique creates Janus droplets with customizable characteristics and uniform size, solving orientation as well as space arrangement problems. This approach holds promising applications for optical devices, sensors, and biomimetic systems.

5.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37763860

ABSTRACT

The research on the remote control of manipulators based on flexible sensor technology is gradually extensive. In order to achieve stable, accurate, and efficient control of the manipulator, it is necessary to reasonably design the structure of the sensor with excellent tensile strength and flexibility. The acquisition of manual information by high-performance sensors is the basis of manipulator control. This paper starts with the manufacturing of materials of the flexible sensor for the manipulator, introduces the substrate, sensor, and flexible electrode materials, respectively, and summarizes the performance of different flexible sensors. From the perspective of manufacturing, it introduces their basic principles and compares their advantages and disadvantages. Then, according to the different ways of wearing, the two control methods of data glove control and surface EMG control are respectively introduced, the principle, control process, and detection accuracy are summarized, and the problems of material microstructure, reducing the cost, optimizing the circuit design and so on are emphasized in this field. Finally, the commercial application in this field is explained and the future research direction is proposed from two aspects: how to ensure real-time control and better receive the feedback signal from the manipulator.

6.
Micromachines (Basel) ; 14(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37763955

ABSTRACT

This study aimed to systematically review the application and research progress of flexible microfluidic wearable devices in the field of sports. The research team thoroughly investigated the use of life signal-monitoring technology for flexible wearable devices in the domain of sports. In addition, the classification of applications, the current status, and the developmental trends of similar products and equipment were evaluated. Scholars expect the provision of valuable references and guidance for related research and the development of the sports industry. The use of microfluidic detection for collecting biomarkers can mitigate the impact of sweat on movements that are common in sports and can also address the issue of discomfort after prolonged use. Flexible wearable gadgets are normally utilized to monitor athletic performance, rehabilitation, and training. Nevertheless, the research and development of such devices is limited, mostly catering to professional athletes. Devices for those who are inexperienced in sports and disabled populations are lacking. Conclusions: Upgrading microfluidic chip technology can lead to accurate and safe sports monitoring. Moreover, the development of multi-functional and multi-site devices can provide technical support to athletes during their training and competitions while also fostering technological innovation in the field of sports science.

7.
Micromachines (Basel) ; 14(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630113

ABSTRACT

The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips' design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips.

8.
Biosens Bioelectron ; 239: 115586, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37603988

ABSTRACT

Abusive use of ß-agonists as feed additives for animals and medication is detrimental to human health and food safety. Conventional assays are restricted to a single type of ß-agonists detection and cannot match the multiplexing features to perform automated, high throughput, and rapid quantitative analysis in real samples. In this research, we develop a portable automated chip system (PACS) with highly integrated automated devices in conjunction with portable microfluidic chips to provide simultaneous point-of-care testing of multiple ß-agonists in the field, simplifying complex manual methods, shortening assay times, and improving sensitivity. Specifically, silicon film is used as reaction substrates for immobilizing the conjugates of ß-agonists to increase the sensitivity of the assay result. Then, the PACS with a chemiluminescence imaging detector is established for automatic high-throughput and sensitive detection of Clenbuterol, Ractopamine, and Salbutamol based on the indirect immunoassay. Newly developed chip with high mixing performance can improve the sensitivity of target determination. Multiplex assays were carried out using the developed system for Clenbuterol, Ractopamine, and Salbutamol with a limit of detection of 54 pg mL-1,59 pg mL-1, and 93 pg mL-1, respectively. Except for sample preparation and coating, the detection in the PACS takes less than 47 min. A satisfactory sample recovery (86.33%-108.12%) was obtained, validating the reliability and practical applicability of this PACS. Meanwhile, the PACS enables sensitive and rapid detection of multiple ß-agonists in farms or markets where lacking advanced laboratory facilities.


Subject(s)
Biosensing Techniques , Clenbuterol , Animals , Humans , Reproducibility of Results , Albuterol , Point-of-Care Testing
9.
Foods ; 12(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569137

ABSTRACT

Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such as being time-consuming and costly and requiring specialist staff, limit their application. Therefore, there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its outstanding strengths. This paper summarizes the application of microfluidic techniques to pyrethroid, carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products. Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing technology and nanomaterials for detecting pesticide residues in food.

10.
Micromachines (Basel) ; 14(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37512588

ABSTRACT

Gel fibers prepared based on microfluidic laminar flow technology have important research value in constructing biomimetic scaffolds and tissue engineering. The key point of microfluidic laminar flow technology is to find the appropriate fluid flow rate in the micropipe. In order to explore the influence of flow rate on the laminar flow phenomenon of a microfluidic chip, a microfluidic chip composed of an intermediate main pipe and three surrounding outer pipes are designed, and the chip is prepared by photolithography and the composite molding method. Then, a syringe pump is used to inject different fluids into the microtubing, and the data of fluid motion are obtained through fluid dynamics simulation and finite element analysis. Finally, a series of optimal adjustments are made for different fluid composition and flow rate combinations to achieve the fluid's stable laminar flow state. It was determined that when the concentration of sodium alginate in the outer phase was 1 wt% and the concentration of CaCl2 in the inner phase was 0.1 wt%, the gel fiber prepared was in good shape, the flow rate was the most stable, and laminar flow was the most obvious when the flow rate of both was 1 mL/h. This study represents a preliminary achievement in exploring the laminar flow rate and fabricating gel fibers, thus offering significant reference value for investigating microfluidic laminar flow technology.

11.
Micromachines (Basel) ; 14(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37512613

ABSTRACT

Microfluidic chips have the advantages of miniaturization, integration, and portability, and are widely used in the early diagnosis of major diseases, personalized medical treatment, environmental detection, health quarantine, and other fields. The existing microfluidic chip manufacturing process is difficult to operate because of complex three-dimensional channels, complicated manufacturing steps, limited printing materials, the difficulty of operating the bonding process, and the need to purchase expensive new equipment. In this paper, an integrated molding method for microfluidic chips that integrates 3D printing and polymer dissolution technology is proposed. First, the channel mold of poly(vinyl alcohol) (PVA) or high impact polystyrene (HIPS) is dissolved to complete the manufacturing of the microfluidic chip channel. The integrated 3D-forming method of microfluidic chips proposed in this paper can manufacture microchannels inside the microfluidic chip, avoid the bonding process, and eliminate the need for rapid alignment of microchannels, material modification, and other operations, thus improving the stability of the process. Finally, by comparing the microchannels made by PVA and HIPS, it is concluded that the quality of the microchannels made by HIPS is obviously better than that made by PVA. This paper provides a new idea for the fabrication of microfluidic chips and the application of HIPS.

12.
Biosens Bioelectron ; 230: 115283, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37019031

ABSTRACT

A desirable lanthanide-based ratiometric fluorescent probe was designed and integrated into a self-designed Fermat spiral microfluidic chip (FS-MC) for the automated determination of a unique bacterial endospore biomarker, dipicolinic acid (DPA), with high selectivity and sensitivity. Here, a blue emission wavelength at 425 nm was generated in the Fermat spiral structure by mixing the europium (Eu3+) and luminol to form the Eu3+/Luminol sensing probe. DPA in the reservoir can be used to specifically bind to Eu3+ under the negative pressure and transfer energy from DPA to Eu3+ sequentially via an antenna effect, thus resulting in a significant increase in the red fluorescence emission peak at 615 nm. According to the fluorescence intensity ratio (F615/F425), a good linearity can be obtained with increasing the concentration of DPA from 0 to 200 µM with a limit of detection as low as 10.11 nM. Interestingly, the designed FS-MC can achieve rapid detection of DPA in only 1 min, reducing detection time and improving sensitivity. Furthermore, a self-designed device integrated with the FS-MC and a smartphone color picker APP was employed for the rapid automatic point-of-care testing (POCT) of DPA in the field, simplifying complex processes and reducing testing times, thus confirming the great promise of this ready-to-use measurement platform for in situ inspection.


Subject(s)
Anthrax , Biosensing Techniques , Humans , Anthrax/diagnosis , Microfluidics , Luminol , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Point-of-Care Testing , Biomarkers/chemistry
13.
J Mater Chem B ; 11(9): 1978-1986, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36752153

ABSTRACT

Since procalcitonin (PCT) is a specific inflammation indicator of severe bacterial inflammation and fungal infection, it is of great significance to construct a sensitive and rapid microfluidic chip to detect PCT in clinical application. The design of micromixers using a lab-on-a-chip (LOC) device is the premise to realizing the adequate mixing of analytical samples and reagents and is an important measure to improve the accuracy and efficiency of determination. In this research study, we investigate the mixing characteristics of hyperbolic micromixers and explore the effects of different hyperbolic curvatures, different Reynolds numbers (Re) and different channel widths on the mixing performance of the micromixers. Then, an optimal micromixer was integrated into a microfluidic chip to fabricate a desirable hyperbolic microfluidic chip (DHMC) for the sensitive determination of inflammation marker PCT with a limit of detection (LOD) as low as 0.17 ng mL-1via a chemiluminescence signal, which can be used as a promising real-time platform for early clinical diagnosis.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Humans , Procalcitonin , Luminescence , Inflammation
14.
Electrophoresis ; 43(21-22): 2175-2183, 2022 11.
Article in English | MEDLINE | ID: mdl-36209396

ABSTRACT

Due to its characteristics of noncontact, non-damage, high flux, and easy-to-achieve flexible manipulation, optically induced dielectrophoresis (ODEP) technology has been employed to manipulate microspherical biological particles, including separation, enrichment, capture, arrangement, and fusion. However, in nature, biomolecules are morphologically diverse, and some of them are rodlike. In order to illustrate the electrodynamics of rodlike particles under the action of ODEP, a transient multi-physical field coupling model of ODEP chip under the hypothesis of electrical double layer thin layer was established in this paper. The arbitrary Lagrangian-Eulerian method is used to track single-rod particle in the strong coupled flow field and electric field simultaneously. The influence of several key factors, including the applied alternating current (AC) electric voltage, the width of optical bright area, and the initial position of particle, on the trajectory of particle center was analyzed in positive dielectrophoresis (DEP) action and negative DEP action, respectively. Especially, the planar motion process of rodlike particles was discussed together. The research results reveal the electrodynamics behavior of rodlike particles based on the action of ODEP, which may provide theoretical support for the further design of rodlike biological cells manipulation chip based on AC ODEP technology in the future.


Subject(s)
Electrophoresis , Electrophoresis/methods
15.
Micromachines (Basel) ; 13(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36014162

ABSTRACT

A microfluidic chip is a tiny reactor that can confine and flow a specific amount of fluid into channels of tens to thousands of microns as needed and can precisely control fluid flow, pressure, temperature, etc. Point-of-care testing (POCT) requires small equipment, has short testing cycles, and controls the process, allowing single or multiple laboratory facilities to simultaneously analyze biological samples and diagnose infectious diseases. In general, rapid detection and stage assessment of viral epidemics are essential to overcome pandemic situations and diagnose promptly. Therefore, combining microfluidic devices with POCT improves detection efficiency and convenience for viral disease SARS-CoV-2. At the same time, the POCT of microfluidic chips increases user accessibility, improves accuracy and sensitivity, shortens detection time, etc., which are beneficial in detecting SARS-CoV-2. This review shares recent advances in POCT-based testing for COVID-19 and how it is better suited to help diagnose in response to the ongoing pandemic.

16.
Biosens Bioelectron ; 212: 114429, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35671693

ABSTRACT

Multiple biomarkers to diagnose the combined manifestations of a patient's disease are an indispensable guide in point-of-care testing (POCT) and clinical applications. Currently, multiplex determination of molecules at different concentrations usually requires assays with adjustable detection ranges. Here, for the first time, commercially available 3M tapes, Tape 610, Tape 810, Tape 600, are integrated into a self-designed key valve microfluidic chip (KVMC) to construct a Tape-based KVMC. Interestingly, 3M tapes with different absorption tunability for the encapsulated antibodies have been used in KVMC as substrate to enable detection of diseases biomarkers in serum ranging from pg mL-1 to µg mL-1. The Tapes antibody layer in the chip has been successfully developed without sophisticated modifications, and the detection probe can be used for a wide range of detection of three biomarkers without multiple modifications and amplification. Automated, multiplexed, simultaneous bioassays of clinically relevant inflammatory biomarkers are performed in the Tape-based KVMC POCT system, with a limit of detection (LOD) of 0.23 µg mL-1 for C-reactive protein (CRP), 0.14 ng mL-1 for procalcitonin (PCT), and 12.53 pg mL-1 for interleukin-6 (IL-6), respectively, which offers a desirable strategy for the early clinical diagnosis of sepsis. The developed Tape-based KVMC possesses high sensitivity and excellent selectivity for three biomarkers in undiluted human serum samples, providing the foundation for the application of chip POCT in clinical and field precision diagnostics.


Subject(s)
Biosensing Techniques , Point-of-Care Systems , Biomarkers , Humans , Immunoassay , Lab-On-A-Chip Devices , Microfluidics
17.
Analyst ; 147(15): 3424-3433, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35670058

ABSTRACT

Since cancer has emerged as one of the most serious threats to human health, the highly sensitive determination of cancer cells is of significant importance to improve the accuracy of early clinical diagnosis. In our investigation, a novel cascade Fermat spiral microfluidic mixer chip (CFSMMC) combined with fluorescence sensors as a point-of-care (POC) testing system is successfully fabricated to detect and differentiate cancer cells (MCF-7) from normal cells with excellent sensitivity and selectivity. Here, copper ions (Cu2+) with peroxidase properties can catalyze the oxidation of the non-fluorescent substrate Amplex Red (AR) to the highly fluorescent resorufin (ox-AR) in the presence of hydrogen peroxide (H2O2). Subsequently, thanks to the quenching response of AS1411-AuNPs to ox-AR in the microchannel and the binding of AS1411 to nucleolin on the surface of cancer cells, a CFSMMC-based POC system is established for the highly sensitive detection and identification of human breast cancer cells in a "turn on" manner. The change in fluorescence intensity is linearly related to the concentration of MCF-7, ranging from 102 to 107 cells per mL with a limit of detection (LOD) as low as 17 cells per mL. Interestingly, the cascaded AND logic gate is integrated with CFSMMC for the first time to distinguish cancer cells from normal cells under the control of logic functions, which exhibits great potential in the development of one-step rapid and intelligent detection and logic discrimination.


Subject(s)
Metal Nanoparticles , Neoplasms , Gold , Humans , Hydrogen Peroxide , Limit of Detection , Microfluidics
18.
Mil Med Res ; 9(1): 8, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35144683

ABSTRACT

BACKGROUND: Early diagnosis and classification of infections increase the cure rate while decreasing complications, which is significant for severe infections, especially for war surgery. However, traditional methods rely on laborious operations and bulky devices. On the other hand, point-of-care (POC) methods suffer from limited robustness and accuracy. Therefore, it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements. METHODS: We developed a wave-shaped microfluidic chip (WMC) assisted multiplexed detection platform (WMC-MDP). WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents. We further combined the detection platform with the streptavidin-biotin (SA-B) amplified system to enhance the sensitivity while using chemiluminescence (CL) intensity as signal readout. We realized simultaneous detection of C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) on the detection platform and evaluated the sensitivity, linear range, selectivity, and repeatability. Finally, we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits. RESULTS: Detection of CRP, PCT, and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25-40 µg/ml, 0.4-12.8 ng/ml, and 50-1600 pg/ml, respectively. The limit of detection of CRP, PCT, and IL-6 were 0.54 µg/ml, 0.11 ng/ml, and 16.25 pg/ml, respectively. WMC-MDP is capable of good adequate selectivity and repeatability. The whole detection procedure takes only 22 min that meets the requirements of a POC device. Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits. CONCLUSIONS: WMC-MDP allows simultaneous, rapid, and sensitive detection of CRP, PCT, and IL-6 with satisfactory selectivity and repeatability, requiring minimal manipulation. However, WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10% enabling WMC-MDP to be a type of point-of-care testing (POCT). Therefore, WMC-MDP provides a promising alternative to POCT of multiple biomarkers. We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.


Subject(s)
Microfluidics , Point-of-Care Testing , Biomarkers , C-Reactive Protein/analysis , Humans , Point-of-Care Systems
19.
ACS Omega ; 6(45): 30779-30789, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34805706

ABSTRACT

Micromixers with the microchannel structure can enable rapid and efficient mixing of multiple types of fluids on a microfluidic chip. Herein, we report the mixing performance of three passive micromixers based on the different mathematical spiral structures. We study the fluid flow characteristics of Archimedes spiral, Fermat spiral, and hyperbolic spiral structures with various channel widths and Reynolds number (Re) ranging from 0 to 10 via numerical simulation and visualization experiments. In addition, we analyze the mechanism of streamlines and Dean vortices at different cross sections during fluid flows. As the fluid flows in the Fermat spiral channel, the centrifugal force induces the Dean vortex to form a chaotic advection, enhancing the fluid mixing performance. By integrating the Fermat spiral channel into a microfluidic chip, we successfully detect acute myocardial infarction (AMI) marker with the double-antibody sandwich method and reduce the detection time to 10 min. This method has a low reagent consumption and a high reaction efficiency and demonstrates great potential in point-of-care testing (POCT).

20.
Micromachines (Basel) ; 12(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832792

ABSTRACT

Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 µM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and has potential practical implementations in biochemical detection and biological computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...