Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612214

ABSTRACT

The present investigation endeavors to explore the influence of rare earth elements on the strength and plasticity characteristics of low-carbon microalloyed steel under tensile loading conditions. The findings from the conducted tensile tests indicate that the incorporation of rare earths leads to a notable enhancement in the yield strength, ultimate tensile strength, and ductility properties of the steel. A comparative analysis of the microstructures reveals that the presence of rare earths significantly refines and optimizes the microstructure of the microalloyed steel. This optimization is manifested through a reduction in grain size, diminution of inclusion sizes, and a concomitant rise in their number density. Moreover, the addition of rare earths is observed to foster an increase in the volumetric fraction of carbides within the steel matrix. These multifaceted microstructural alterations collectively contribute to a substantial strengthening of the microalloyed steel. Furthermore, it is elucidated that the synergistic interaction between rare earth elements and both carbon (C) and niobium (Nb) in the steel matrix augments the extent of the Lüders strain region during the tensile deformation of specimens. This phenomenon is accompanied by the effective modification of inclusions by the rare earths, which serves to mitigate stress concentrations at the interfaces between the inclusions and the surrounding matrix. This article systematically evaluates the modification mechanism of rare earth microalloying, which provides a basis for broadening the application of rare earth microalloying in microalloyed steel.

2.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676613

ABSTRACT

Oxide metallurgy technology can improve the microstructure of a coarse-grained heat-affected zone (CGHAZ) but introduces extra inclusions. Local corrosion behavior of the CGHAZ of a Zr-Ti-Al-RE deoxidized steel was investigated in this work using theoretical calculations and experimental verification. The modified inclusions have a (Zr-Mg-Al-Ca-RE)Ox core claded by a CaS and TiN shell. CaS dissolves first, followed by the oxide core, leaving TiN parts. This confirms that the addition of rare earth can reduce lattice distortion and prevent a galvanic couple between the inclusions and the matrix, while the chemical dissolution of CaS causes localized acidification, resulting in the pitting corrosion initiation.

3.
Materials (Basel) ; 15(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499975

ABSTRACT

In this present work, during high heat input welding of the weld metal, different types of Mn-depleted zones were achieved by different cooling rates. The effects of cooling rates on Mn-depleted zone formation and acicular ferrite (AF) transformation were analyzed. The Mn-depleted zone around the inclusions, as well as the interface concentration of Mn atoms, are found to be significantly different with different cooling rates. When the cooling rate is 10 °C/s, the interface concentration of Mn atoms around the inclusions is the lowest, the area of Mn-depleted zone is the smallest, and the proportion of AF in the weld metal is the highest. As the cooling rate decreases further, the interface concentration of Mn begins to rise, the area of the Mn-depleted zone gradually expands, and the proportion of AF decreases. However, when the cooling rate reaches 100 °C/s, only a very small amount of MnS precipitates, no Mn-depleted zone forms around the inclusions, and acicular ferrite cannot be produced effectively in the weld metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...