Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 47(7): 2459-2474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38501941

ABSTRACT

Tilletia horrida is an important soilborne fungal pathogen that causes rice kernel smut worldwide. We found a glycoside hydrolase family 128 protein, designated ThGhd_7, caused cell death in Nicotiana benthamiana leaves. The predicted signal peptide (SP) of ThGhd_7 targets it for secretion. However, loss of the SP did not affect its ability to induce cell death. The 23-201 amino acid sequence of ThGhd_7 was sufficient to trigger cell death in N. benthamiana. ThGhd_7 expression was induced and upregulated during T. horrida infection. ThGhd_7 localised to both the cytoplasm and nucleus of plant cells, and nuclear localisation was required to induce cell death. The ability of ThGhd_7 to trigger cell death in N. benthamiana depends on RAR1 (required for Mla12 resistance), SGT1 (suppressor of G2 allele of Skp1), and BAK1/SERK3 (somatic embryogenesis receptor-like kinase 3). Heterologous overexpression of ThGhd_7 in rice reduced reactive oxygen species (ROS) production and enhanced susceptibility to T. horrida. Further research revealed that ThGhd_7 interacted with and destabilised OsSGT1, which is required for ROS production and is a positive regulator of rice resistance to T. horrida. Taken together, these findings suggest that T. horrida employs ThGhd_7 to disrupt ROS production and thereby promote infection.


Subject(s)
Nicotiana , Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Oryza/genetics , Oryza/microbiology , Oryza/immunology , Oryza/metabolism , Plant Immunity/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Cell Death , Basidiomycota/physiology , Plants, Genetically Modified , Plant Leaves/metabolism , Plant Leaves/genetics
2.
J Fungi (Basel) ; 10(1)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276028

ABSTRACT

Ustilago crameri is a pathogenic basidiomycete fungus that causes foxtail millet kernel smut (FMKS), a devastating grain disease in most foxtail-millet-growing regions of the world. Here, we report an assembled high-quality genome sequence of U. crameri strain SCZ-6 isolated from the diseased grains of foxtail millet in Changzhi, Shanxi Province, China. The genome size is 19.55 Mb, consisting of 73 contigs (N50 = 840,209 bp) with a G + C content of 54.09%, and encoding 6576 predicted genes and 6486 genes supported by RNA-seq. Evolutionarily, U. crameri lies close to the barley smut U. hordei, and an obvious co-linearity was observed between these two smut fungi. We annotated the genome of U. crameri strain SCZ-6 using databases, identifying 1827 pathogen-host interaction (PHI)-associated genes, 1324 genes encoding fungal virulence factors, 259 CAZy-related genes, 80 genes encoding transporters, and 206 putative cytochrome P450 genes; their expression profiles at different inoculation time points were also detected. Additionally, 70 candidate pathogen effectors were identified according to their expression patterns and predicted functions. In summary, our results provide important insights into the pathogenic mechanisms of the pathogenesis-related genes of U. crameri and a robust foundation for further investigation.

3.
Rice (N Y) ; 15(1): 64, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36522490

ABSTRACT

Rice kernel smut (RKS), caused by the fungus Tilletia horrida, has become a major disease in rice-growing areas worldwide, especially since the widespread cultivation of high-yielding hybrid rice varieties. The disease causes a significant yield loss during the production of rice male sterile lines by producing masses of dark powdery teliospores. This review mainly summarizes the pathogenic differentiation, disease cycle, and infection process of the T. horrida, as well as the decoding of the T. horrida genome, functional genomics, and effector identification. We highlight the identification and characterization of virulence-related pathways and effectors of T. horrida, which could foster a better understanding of the rice-T. horrida interaction and help to elucidate its pathogenicity molecular mechanisms. The multiple effective disease control methods for RKS are also discussed, included chemical fungicides, the mining of resistant rice germplasms/genes, and the monitoring and early warning signs of this disease in field settings.

4.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499087

ABSTRACT

The basidiomycete fungus Tilletia horrida causes rice kernel smut (RKS), a crucial disease afflicting hybrid-rice-growing areas worldwide, which results in significant economic losses. However, few studies have investigated the pathogenic mechanisms and functions of effectors in T. horrida. In this study, we found that the candidate effector ThSCSP_12 caused cell necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide (SP) of this protein has a secreting function, which is required for ThSCSP_12 to induce cell death. The 1- 189 amino acid (aa) sequences of ThSCSP_12 are sufficient to confer it the ability to trigger cell death in N. benthamiana. The expression of ThSCSP_12 was induced and up-regulated during T. horrida infection. In addition, we also found that ThSCSP_12 localized in both the cytoplasm and nucleus of plant cells and that nuclear localization of this protein is required to induce cell death. Furthermore, the ability of ThSCSP_12 to trigger cell death in N. benthamiana depends on the (RAR1) protein required for Mla12 resistance but not on the suppressor of the G2 allele of Skp1 (SGT1), heat shock protein 90 (HSP90), or somatic embryogenesis receptor-like kinase (SERK3). Crucially, however, ThSCSP_12 induced a defense response in N. benthamiana leaves; yet, the expression of multiple defense-related genes was suppressed in response to heterologous expression in host plants. To sum up, these results strongly suggest that ThSCSP_12 operates as an effector in T. horrida-host interactions.


Subject(s)
Basidiomycota , Ustilaginales , Plant Diseases/genetics , Plant Diseases/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Cell Death
5.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499367

ABSTRACT

Tilletia horrida is a biotrophic basidiomycete fungus that causes rice kernel smut, one of the most significant diseases in hybrid rice-growing areas worldwide. Little is known about the pathogenic mechanisms and functions of effectors in T. horrida. Here, we performed functional studies of the effectors in T. horrida and found that, of six putative effectors tested, only ThSCSP_14 caused the cell death phenotype in epidermal cells of Nicotiana benthamiana leaves. ThSCSP_14 was upregulated early on during the infection process, and the encoded protein was secreted. The predicted signal peptide (SP) of ThSCSP_14 was required for its ability to induce the necrosis phenotype. Furthermore, the ability of ThSCSP_14 to trigger cell death in N. benthamiana depended on suppressing the G2 allele of Skp1 (SGT1), required for Mla12 resistance (RAR1), heat-shock protein 90 (HSP90), and somatic embryogenesis receptor-like kinase (SERK3). It is important to note that ThSCSP_14 induced a plant defense response in N. benthamiana leaves. Hence, these results demonstrate that ThSCSP_14 is a possible effector that plays an essential role in T. horrida-host interactions.


Subject(s)
Basidiomycota , Ustilaginales , Cysteine , Plant Diseases/microbiology , Nicotiana/genetics , Nicotiana/microbiology
6.
Plant Physiol ; 187(1): 73-87, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34618139

ABSTRACT

Cytosine base editors (CBEs) are the promising tools for precise genome editing in plants. It is important to investigate potential off-target effects of an efficient CBE at the genome and transcriptome levels in a major crop. Based on comparison of five cytidine deaminases and two different promoters for expressing single-guide RNAs (sgRNAs), we tested a highly efficient A3A/Y130F-BE3 system for efficient C-to-T base editing in tomato (Solanum lycopersicum). We then conducted whole-genome sequencing of four base-edited tomato plants, three Green fluorescent protein (GFP)-expressing control plants, and two wild-type plants. The sequencing depths ranged from 25× to 49× with read mapping rates >97%. No sgRNA-dependent off-target mutations were detected. Our data show an average of approximately 1,000 single-nucleotide variations (SNVs) and approximately 100 insertions and deletions (indels) per GFP control plant. Base-edited plants had on average elevated levels of SNVs (approximately 1,250) and indels (approximately 300) per plant. On average, about 200 more C-to-T (G-to-A) mutations were found in a base-edited plant than a GFP control plant, suggesting some level of sgRNA-independent off-target effects, though the difference is not statistically significant. We also conducted RNA sequencing of the same four base-edited plants and three GFP control plants. An average of approximately 200 RNA SNVs was discovered per plant for either base-edited or GFP control plants. Furthermore, no specific enrichment of C-to-U mutations can be found in the base-edited plants. Hence, we cannot find any evidence for bona fide off-target mutations by A3A/Y130F-BE3 at the transcriptome level.


Subject(s)
Cytosine/metabolism , Gene Expression Profiling , Genome-Wide Association Study , Plant Proteins/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/metabolism
7.
Plant Biotechnol J ; 19(10): 2052-2068, 2021 10.
Article in English | MEDLINE | ID: mdl-34042262

ABSTRACT

Cytosine base editors (CBEs) are great additions to the expanding genome editing toolbox. To improve C-to-T base editing in plants, we first compared seven cytidine deaminases in the BE3-like configuration in rice. We found A3A/Y130F-CBE_V01 resulted in the highest C-to-T base editing efficiency in both rice and Arabidopsis. Furthermore, we demonstrated this A3A/Y130F cytidine deaminase could be used to improve iSpyMacCas9-mediated C-to-T base editing at A-rich PAMs. To showcase its applications, we first applied A3A/Y130F-CBE_V01 for multiplexed editing to generate microRNA-resistant mRNA transcripts as well as pre-mature stop codons in multiple seed trait genes. In addition, we harnessed A3A/Y130F-CBE_V01 for efficient artificial evolution of novel ALS and EPSPS alleles which conferred herbicide resistance in rice. To further improve C-to-T base editing, multiple CBE_V02, CBE_V03 and CBE_V04 systems were developed and tested in rice protoplasts. The CBE_V04 systems were found to have improved editing activity and purity with focal recruitment of more uracil DNA glycosylase inhibitors (UGIs) by the engineered single guide RNA 2.0 scaffold. Finally, we used whole-genome sequencing (WGS) to compare six CBE_V01 systems and four CBE_V04 systems for genome-wide off-target effects in rice. Different levels of cytidine deaminase-dependent and sgRNA-independent off-target effects were indeed revealed by WGS among edited lines by these CBE systems. We also investigated genome-wide sgRNA-dependent off-target effects by different CBEs in rice. This comprehensive study compared 21 different CBE systems, and benchmarked PmCDA1-CBE_V04 and A3A/Y130F-CBE_V04 as next-generation plant CBEs with high editing efficiency, purity, and specificity.


Subject(s)
Cytosine , Gene Editing , CRISPR-Cas Systems , Mutation , RNA, Guide, Kinetoplastida , Whole Genome Sequencing
8.
Plant Commun ; 2(2): 100101, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33898973

ABSTRACT

The most popular CRISPR-SpCas9 system recognizes canonical NGG protospacer adjacent motifs (PAMs). Previously engineered SpCas9 variants, such as Cas9-NG, favor G-rich PAMs in genome editing. In this manuscript, we describe a new plant genome-editing system based on a hybrid iSpyMacCas9 platform that allows for targeted mutagenesis, C to T base editing, and A to G base editing at A-rich PAMs. This study fills a major technology gap in the CRISPR-Cas9 system for editing NAAR PAMs in plants, which greatly expands the targeting scope of CRISPR-Cas9. Finally, our vector systems are fully compatible with Gateway cloning and will work with all existing single-guide RNA expression systems, facilitating easy adoption of the systems by others. We anticipate that more tools, such as prime editing, homology-directed repair, CRISPR interference, and CRISPR activation, will be further developed based on our promising iSpyMacCas9 platform.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genome, Plant , Oryza/genetics , Triticum/genetics , Zea mays/genetics
9.
Nat Commun ; 12(1): 1944, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782402

ABSTRACT

CRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis. This study greatly expands the targeting scope of Cas12a for crop genome engineering.


Subject(s)
Arabidopsis/genetics , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Endodeoxyribonucleases/genetics , Gene Editing/methods , Genetic Engineering/methods , Genome, Plant , Oryza/genetics , Agrobacterium tumefaciens , Alleles , Arabidopsis/metabolism , Bacterial Proteins/metabolism , Base Sequence , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Crops, Agricultural , Endodeoxyribonucleases/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Oryza/metabolism , Plants, Genetically Modified , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Sequence Alignment
10.
Genomics ; 113(3): 1396-1406, 2021 05.
Article in English | MEDLINE | ID: mdl-33711454

ABSTRACT

Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.


Subject(s)
Genome-Wide Association Study , Oryza , Genome, Plant , Humans , Linkage Disequilibrium , Oryza/genetics , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci
11.
Nat Plants ; 7(1): 25-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33398158

ABSTRACT

The rapid development of the CRISPR-Cas9, -Cas12a and -Cas12b genome editing systems has greatly fuelled basic and translational plant research1-6. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G)7, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant8. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing/methods , Genome, Plant/genetics , B30.2-SPRY Domain/genetics , Larix/genetics , Oryza/genetics , Protoplasts
12.
Genomics ; 112(6): 5214-5226, 2020 11.
Article in English | MEDLINE | ID: mdl-32966859

ABSTRACT

Rice kernel smut (RKS), caused by the basidiomycete fungus Tilletia horrida, is one of the most devastating diseases affecting the production of male sterile lines of rice (Oryza sativa) worldwide. However, the molecular mechanisms of resistance to T. horrida have not yet been explored. In the present study, RNA sequencing analysis of rice male sterile lines, that are resistant and susceptible to RKS (Jiangcheng 3A and 9311A, respectively) was conducted after T. horrida infection. Transcriptomic analysis showed that a greater number of differentially expressed gene (DEGs) was observed in Jiangcheng 3A compared with 9311A after T. horrida inoculation. Furthermore, 4, 425 DEGs were uniquely detected in Jiangcheng 3A, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of these DEGs revealed that oxidoreductase activity, peroxidase activity, cutin, suberine and wax biosynthesis, and flavonoid biosynthesis were key pathways for T. horrida resistance. In summary and based on transcriptome analysis, we suggest a preliminary regulatory mechanism for Jiangcheng 3A cultivar resistance response to T. horrida inoculation.


Subject(s)
Basidiomycota , Disease Resistance/genetics , Oryza/genetics , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Biomass , Genes, Plant , Host-Pathogen Interactions/genetics , Metabolic Networks and Pathways , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oryza/metabolism , Plant Growth Regulators , Plant Infertility , RNA-Seq , Salicylic Acid/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
14.
Sci Rep ; 8(1): 15413, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337609

ABSTRACT

Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2 Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions relevant to pathogenicity were presumed. T. horrida possesses a smaller set of carbohydrate-active enzymes and secondary metabolites, which probably reflect the specific characteristics of its infection and biotrophic lifestyle. Genes that encode secreted proteins and enzymes of secondary metabolism, and genes that are represented in the pathogen-host interaction gene database genes, are highly expressed during early infection; this is consistent with their potential roles in pathogenicity. Furthermore, among the 131 candidate pathogen effectors identified according to their expression patterns and functionality, we validated two that trigger leaf cell death in Nicotiana benthamiana. In summary, we have revealed new molecular mechanisms involved in the evolution, biotrophy, and pathogenesis of T. horrida.


Subject(s)
Fungal Proteins/genetics , Genome, Fungal , Genomics/methods , Oryza/microbiology , Ustilaginales/genetics , Ustilaginales/pathogenicity , Virulence Factors/genetics , Biological Evolution , Gene Expression Profiling , Host-Pathogen Interactions , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Ustilaginales/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...