Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Mol Med Rep ; 15(6): 3905-3911, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28440441

ABSTRACT

The aim of the present study was to investigate whether methylation of the angiotensin I converting enzyme 2 (ACE2) promoter increases the risk of essential hypertension (EH). A total of 96 patients with EH were recruited and 96 sex­ and age­matched healthy controls. Methylation of 5 CpG dinucleotides in the ACE2 promoter was quantified using bisulfite pyrosequencing. Logistic regression and multiple linear regression were used to adjust for confounding factors and the generalized multifactor dimensionality reduction (GMDR) method was applied to investigate high­order interactions. Methylation of CpG4 (adjusted P=0.020) and CpG5 (adjusted P=0.036) was significantly higher in patients with EH, with frequency 97.56±5.65% and 12.75±4.15% in EH individuals and 95.73±9.11% and 11.47±3.67% in healthy controls. GMDR detected significant interaction among the 5 CpG sites (odds ratio=7.33, adjusted P=0.01). Furthermore, receiver operating characteristic curves identified that CpG5 methylation was a significant predictor of EH. Notably, CpG2 methylation was significantly higher in males than in females (adjusted P=0.018). Conversely, CpG5 methylation was significantly lower in males (adjusted P=0.032). These results indicated that aberrant methylation of the ACE2 promoter may be associated with EH risk. In addition, sex may significantly influence ACE2 methylation.


Subject(s)
DNA Methylation , Essential Hypertension/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Peptidyl-Dipeptidase A/genetics , Promoter Regions, Genetic , Angiotensin-Converting Enzyme 2 , Biomarkers , Case-Control Studies , CpG Islands , Essential Hypertension/metabolism , Female , Genetic Loci , Humans , Male , Middle Aged , ROC Curve
2.
Fen Zi Xi Bao Sheng Wu Xue Bao ; 41(2): 150-4, 2008 Apr.
Article in Chinese | MEDLINE | ID: mdl-18567506

ABSTRACT

Wheat-Haynaldia villosa chromosome substitution line (6A/6V) and translocation lines (6DL/6VS, 6AL/6VS) were obtained through hybridization of H. villosa with powdery mildew susceptible cultivated wheat. Substitution line and translocation lines contain V chromosome or the chromosome short arm (VS) of H. villosa. They are resistant to powdery mildew. In this study, mitochondrial proteome changes were analyzed by using substitution line (6A/6V), translocation line (6DL/6VS) as experimental materials in order to studying the effects of V chromosome on the mitochondrial proteome and related to powdery mildew resistance. The results indicated that 16 new mitochondrial protein spots (spot1, 22kDa/PI8.5; spot2, 31 kDa/PI 7.5; spot3, 28 kDa/PI 7.0; spot4, 31 kDa/PI 6.5; spot5, 40 kDa/PI 7.5; spot6, 40 kDa/PI 7.4; spot7, 80 kDa/PI 8.4; spot8, 50 kDa/PI 7.5; spot9, 60 kDa/PI 7.3; spot10, 65 kDa/PI 6.6; spot11, 65 kDa/PI 6.6; spot12, 73 kDa/PI 7.5; spot13, 73 kDa/PI 7.7; spot14, 46 kDa/PI 7.4; spot15, 46 kDa/PI 7.3; spot16, 38 kDa/PI 6.3) were produced and 7 mitochondrial protein spots (spot1, 40 kDa/PI 7.5; spot2, 43 kDa/PI 7.6; spot3, 48 kDa/PI 7.5; spot4, 42 kDa/PI 8.0; spot5, 43 kDa/PI 7.5; spot6, 32 kDa/PI 4.8; spot7, 40 kDa/PI 5.5) were absent in substitution line, 7 new mitochondrial protein spots (spotl, 43 kDa/PI 6.3; spot2, 60 kDa/PI 6.5; spot3, 60 kDa/PI 6.4; spot4, 65 kDa/PI 7.5; spot5, 55 kDa/PI 8.2; spot6, 31 kDa/PI 8.0; spot7, 43 kDa/PI 8.0) were produced and 6 mitochondrial protein spots (spot1', 66 kDa/PI 8.3; spot2', 58 kDa/PI 8.5; spot3', 36 kDa/PI 7.0; spot4', 48 kDa/PI 7.7; spot5', 48 kDa/PI 6.8; spot6', 43 kDa/PI 6.2) were absent in translocation line. These experimental results suggest that V chromosome or VS of H. villosa can obviously lead mitochondrial proteome changed. These changes may be associated with resistant to powdery mildew of substitution line and translocation line.


Subject(s)
Chromosomes, Plant/genetics , Mitochondria/chemistry , Poaceae/genetics , Proteomics , Translocation, Genetic , Triticum/genetics , Chimera/genetics , Chimera/metabolism , Crosses, Genetic , Electrophoresis, Gel, Two-Dimensional , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Poaceae/chemistry , Poaceae/metabolism , Triticum/chemistry , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...