Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(5): 7533-7542, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159183

ABSTRACT

Biochar, as a soil amendment, can be applied to remediate heavy metal (HM) contaminated farmland. However, there is little research on the effect of tobacco biochar (TB) derived from tobacco waste on HM controlling in edible parts of vegetables. In this study, the impact of two TB levels on the plant growth, copper (Cu) and cadmium (Cd) accumulation in the edible parts of lettuce and chrysanthemum, and on Cu and Cd bioavailability of rhizosphere soil was investigated through in-situ field experiments. The results showed that TB has rich oxygen containing functional groups, high porosity, high nitrogen adsorption capacity. The addition of 5 t ha-1 and 10 t ha-1 TB significantly increased the shoot biomass of chrysanthemum, but had no effect on the growth of lettuce. Two levels of TB significantly increased the pH value, but decreased the available Cu and Cd concentrations of rhizosphere soil, thereby reducing the Cu and Cd accumulations in the edible parts of lettuce and chrysanthemum. The findings provided effective evidences that TB derived from tobacco waste is an efficient strategy for controlling Cu and Cd accumulation in the edible parts of vegetables to ensure agri-product safety production in HM-polluted farmland.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Copper , Vegetables , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal , Nicotiana , Soil , Lactuca
2.
Front Microbiol ; 14: 1237409, 2023.
Article in English | MEDLINE | ID: mdl-37779721

ABSTRACT

Soil bacterial communities are intricately linked to ecosystem functioning, and understanding how communities assemble in response to environmental change is ecologically significant. Little is known about the assembly processes of bacteria communities across agro-ecosystems, particularly with regard to their environmental adaptation. To gain further insights into the microbial community characteristics of agro-ecosystems soil in the Panxi area of Sichuan Province and explore the key environmental factors driving the assembly process of the microbial community, this study conducted field sampling in major farmland areas of Panxi area and used Illumina MiSeq high-throughput sequencing technology to conduct bacterial sequencing. Soil organic matter (SOM), alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), available potassium (AK) and other environmental factors were determined. The membership function method and principal component analysis method were used to evaluate the fertility of the soil. The results revealed minimal differences in alpha diversity index among samples with different comprehensive fertility indices, while NMDS analysis showed that community differences between species were mainly reflected in high fertility and low fertility (R: 0.068, p: 0.011). Proteobacteria, Acidobacteria and Actinobacteria were the main types of microbial communities, accounting for more than 60% of the relative abundance. Proteobacteria accounted for a higher proportion in the high fertility samples, while Acidobacteria and Actinobacteria accounted for a higher proportion in the middle and low fertility samples. Both the neutral theoretical model and zero model analysis showed that the microbial communities in tobacco-planting soil with different comprehensive fertility indices presented a random assembly process. With the increase in environmental distance difference, the diversity of the microbial community in medium and low-fertility soil also increased, but there was no significant change in high-fertility soil. Redundancy analysis showed that pH and SOM were the key factors affecting microbial community composition. The results of this study can provide a theoretical reference for the study of environmental factors and microbial communities in tobacco-growing soil.

3.
Front Chem ; 10: 1054286, 2022.
Article in English | MEDLINE | ID: mdl-36578352

ABSTRACT

In this work, a porous tobacco straw-based polyacrylic acid hydrogel STS-PAA with high adsorption performance was prepared by polymerizing pretreated waste tobacco straw (TS) with acrylic acid/potassium acrylate by UV radiation initiation. The adsorption performance of metal ions was investigated. The effects of different temperatures (25°C, 35°C, and 45°C), adsorption times (1-420 min), pH values (2.0-6.0) and initial concentrations (0.25-4.0 mmol L-1) of metal ions on the adsorption amount of heavy metal ions were investigated. The results showed that the hydrogel had a high removal rate of Pb2+, Cd2+ and Hg2+ in aqueous solution. The adsorption of Pb2+ was particularly effective. When C0 = 4.0 mmol L-1, pH = 6, the equilibrium adsorption amount of Pb2+, Cd2+ and Hg2+ reached 1.49 mmol g-1, 1.02 mmol L-1 and 0.94 mmol g-1, respectively. The chemical structure and morphology of the hydrogels were characterized by FT-IR, EDS, SEM and XPS. The Langmuir model fits well with the adsorption system. The kinetic data suggest the adsorption of Pb2+, Cd2+ and Hg2+ follow the pseudo-first-order model. This indicates that STS-PAA adsorption of three heavy metal ions is monolayer physical adsorption. Thermodynamic analysis shows that the adsorption of Pb2+, Cd2+ and Hg2+ by STS-PAA is an endothermic (ΔH>0) entropy increase (ΔS>0) non-spontaneous reaction.

4.
Ecotoxicol Environ Saf ; 236: 113437, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35367878

ABSTRACT

Melatonin is a well-known signaling molecule that mediates a range of physiological activities and various stress reactions in plants. We comprehensively tested the effect of melatonin on the development of root hairs and glandular trichomes and found that melatonin pretreatment of tobacco seeds significantly increased the length of root hairs. Furthermore, melatonin-treated tobacco exhibited significantly higher density of trichomes and larger glandular heads on long-stalk glandular trichomes than untreated plants, which resulted in enhanced secretion in glandular trichomes. Exogenous melatonin enhanced the aphid resistance of plants by facilitating the accumulation of cembranoids in the glandular trichomes and alleviated cadmium toxicity by increasing the Cd-exudation capacity of long glandular trichomes. Metabolic analysis indicated that the contents of 108 metabolites significantly changed upon melatonin treatment, with the contents of those that are directly/indirectly involved in melatonin metabolism changing the most. Further, KEGG pathway analysis suggested that the metabolic pathways of amino acids, reducing sugar, secondary metabolites, indole alkaloid biosynthesis, purine, pyrimidine, and ABC transporters were greatly influenced by exogenous melatonin application. Moreover, metabolisms of melatonin-related antioxidants and pyrimidine nucleoside antibiotics were enhanced after melatonin treatment. Melatonin improved tobacco resistance to high salinity, drought, and extreme temperature stresses, as indicated by improved photosynthetic and antioxidant capacities in treated vs. untreated plants. This study lays a foundation for the comprehensive application of melatonin to increase the stress tolerance of plants.


Subject(s)
Melatonin , Trichomes , Antioxidants/metabolism , Antioxidants/pharmacology , Cadmium/metabolism , Cadmium/toxicity , Gene Expression Regulation, Plant , Melatonin/metabolism , Melatonin/pharmacology , Plant Leaves/metabolism , Stress, Physiological , Nicotiana/metabolism , Trichomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...