Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299759

ABSTRACT

In recent years, the development of deep learning technology has significantly benefited agriculture in domains such as smart and precision farming. Deep learning models require a large amount of high-quality training data. However, collecting and managing large amounts of guaranteed-quality data is a critical issue. To meet these requirements, this study proposes a scalable plant disease information collection and management system (PlantInfoCMS). The proposed PlantInfoCMS consists of data collection, annotation, data inspection, and dashboard modules to generate accurate and high-quality pest and disease image datasets for learning purposes. Additionally, the system provides various statistical functions allowing users to easily check the progress of each task, making management highly efficient. Currently, PlantInfoCMS handles data on 32 types of crops and 185 types of pests and diseases, and stores and manages 301,667 original and 195,124 labeled images. The PlantInfoCMS proposed in this study is expected to significantly contribute to the diagnosis of crop pests and diseases by providing high-quality AI images for learning about and facilitating the management of crop pests and diseases.


Subject(s)
Agriculture , Plant Diseases , Farms , Crops, Agricultural
2.
Front Plant Sci ; 12: 724487, 2021.
Article in English | MEDLINE | ID: mdl-34975933

ABSTRACT

Past studies of plant disease and pest recognition used classification methods that presented a singular recognition result to the user. Unfortunately, incorrect recognition results may be output, which may lead to further crop damage. To address this issue, there is a need for a system that suggest several candidate results and allow the user to make the final decision. In this study, we propose a method for diagnosing plant diseases and identifying pests using deep features based on transfer learning. To extract deep features, we employ pre-trained VGG and ResNet 50 architectures based on the ImageNet dataset, and output disease and pest images similar to a query image via a k-nearest-neighbor algorithm. In this study, we use a total of 23,868 images of 19 types of hot-pepper diseases and pests, for which, the proposed model achieves accuracies of 96.02 and 99.61%, respectively. We also measure the effects of fine-tuning and distance metrics. The results show that the use of fine-tuning-based deep features increases accuracy by approximately 0.7-7.38%, and the Bray-Curtis distance achieves an accuracy of approximately 0.65-1.51% higher than the Euclidean distance.

SELECTION OF CITATIONS
SEARCH DETAIL
...