Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35741496

ABSTRACT

Recently, deep neural network-based image compressed sensing methods have achieved impressive success in reconstruction quality. However, these methods (1) have limitations in sampling pattern and (2) usually have the disadvantage of high computational complexity. To this end, a fast multi-scale generative adversarial network (FMSGAN) is implemented in this paper. Specifically, (1) an effective multi-scale sampling structure is proposed. It contains four different kernels with varying sizes so that decompose, and sample images effectively, which is capable of capturing different levels of spatial features at multiple scales. (2) An efficient lightweight multi-scale residual structure for deep image reconstruction is proposed to balance receptive field size and computational complexity. The key idea is to apply smaller convolution kernel sizes in the multi-scale residual structure to reduce the number of operations while maintaining the receptive field. Meanwhile, the channel attention structure is employed for enriching useful information. Moreover, perceptual loss is combined with MSE loss and adversarial loss as the optimization function to recover a finer image. Numerous experiments show that our FMSGAN achieves state-of-the-art image reconstruction quality with low computational complexity.

2.
Comput Math Methods Med ; 2022: 4471736, 2022.
Article in English | MEDLINE | ID: mdl-35495886

ABSTRACT

Infectious diseases pose a serious threat to human life, the Genome Wide Association Studies (GWAS) can analyze susceptibility genes of infectious diseases from the genetic level and carry out targeted prevention and treatment. The susceptibility genes for infectious diseases often act in combination with multiple susceptibility sites; therefore, high-order epistasis detection has become an important means. However, due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models. Furthermore, these methods are exposed to repeated query and model inversion attacks in the process of iterative optimization, which may disclose Single Nucleotide Polymorphism (SNP) information associated with individual privacy. Therefore, in order to solve these problems, this paper proposed a safe harmony search algorithm for high-order gene interaction detection, termed as HS-DP. Firstly, the linear weighting method was used to integrate 5 objective functions to screen out high-order SNP sets with high correlation, including K2-Score, JS divergence, logistic regression, mutual information, and Gini. Then, based on the Differential Privacy (DP) theory, the function disturbance mechanism was introduced to protect the security of individual privacy information associated with the objective function, and we proved the rationality of the disturbance mechanism theoretically. Finally, the practicability and superiority of the algorithm were verified by experiments. Experimental results showed that the algorithm proposed in this paper could improve the detection accuracy to the greatest extent while guaranteeing privacy.


Subject(s)
Communicable Diseases , Epistasis, Genetic , Algorithms , Communicable Diseases/diagnosis , Communicable Diseases/genetics , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide
3.
IEEE J Biomed Health Inform ; 26(6): 2405-2416, 2022 06.
Article in English | MEDLINE | ID: mdl-33764880

ABSTRACT

N6-methyladenosine (m6A) has been shown to play crucial roles in RNA metabolism, physiology, and pathological processes. However, the specific regulatory mechanisms of most methylation sites remain uncharted due to the complexity of life processes. Biological experimental methods are costly to solve this problem, and computational methods are relatively lacking. The discovery of local co-methylation patterns (LCPs) of m6A epi-transcriptome data can benefit to solve the above problems. Based on this, we propose a novel biclustering algorithm based on the beta distribution (BDBB), which realizes the mining of LCPs of m6A epi-transcriptome data. BDBB employs the Gibbs sampling method to complete parameter estimation. In the process of modeling, LCPs are recognized as sharp beta distributions compared to the background distribution. Simulation study showed BDBB can extract all the three actual LCPs implanted in the background data and the overlap conditions between them with considerable accuracy (almost close to 100%). On MeRIP-Seq data of 69,446 methylation sites under 32 experimental conditions from 10 human cell lines, BDBB unveiled two LCPs, and Gene Ontology (GO) enrichment analysis showed that they were enriched in histone modification and embryo development, etc. important biological processes respectively. The GOE_Score scoring indicated that the biclustering results of BDBB in the m6A epi-transcriptome data are more biologically meaningful than the results of other biclustering algorithms.


Subject(s)
Algorithms , Gene Expression Profiling , Cluster Analysis , Computer Simulation , Gene Expression Profiling/methods , Humans , Methylation , Transcriptome/genetics
4.
Article in English | MEDLINE | ID: mdl-32078557

ABSTRACT

Conventional classification models for epileptic EEG signal recognition need sufficient labeled samples as training dataset. In addition, when training and testing EEG signal samples are collected from different distributions, for example, due to differences in patient groups or acquisition devices, such methods generally cannot perform well. In this paper, a cross-domain classification model with knowledge utilization maximization called CDC-KUM is presented, which takes advantage of the data global structure provided by the labeled samples in the related domain and unlabeled samples in the current domain. Through mapping the data into kernel space, the pairwise constraint regularization term is combined together the predictive differences of the labeled data in the source domain. Meanwhile, the soft clustering regularization term using quadratic weights and Gini-Simpson diversity is applied to exploit the distribution information of unlabeled data in the target domain. Experimental results show that CDC-KUM model outperformed several traditional non-transfer and transfer classification methods for recognition of epileptic EEG signals.


Subject(s)
Electroencephalography/classification , Epilepsy/diagnosis , Machine Learning , Signal Processing, Computer-Assisted , Algorithms , Humans
5.
Front Neuroinform ; 15: 781551, 2021.
Article in English | MEDLINE | ID: mdl-35002667

ABSTRACT

Early diagnosis of pathological brains leads to early interventions in brain diseases, which may help control the illness conditions, prolong the life of patients, and even cure them. Therefore, the classification of brain diseases is a challenging but helpful task. However, it is hard to collect brain images, and the superabundance of images is also a great challenge for computing resources. This study proposes a new approach named TReC: Transferred Residual Networks (ResNet)-Convolutional Block Attention Module (CBAM), a specific model for small-scale samples, to detect brain diseases based on MRI. At first, the ResNet model, which is pre-trained on the ImageNet dataset, serves as initialization. Subsequently, a simple attention mechanism named CBAM is introduced and added into every ResNet residual block. At the same time, the fully connected (FC) layers of the ResNet are replaced with new FC layers, which meet the goal of classification. Finally, all the parameters of our model, such as the ResNet, the CBAM, and new FC layers, are retrained. The effectiveness of the proposed model is evaluated on brain magnetic resonance (MR) datasets for multi-class and two-class tasks. Compared with other state-of-the-art models, our model reaches the best performance for two-class and multi-class tasks on brain diseases.

6.
Sensors (Basel) ; 20(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942579

ABSTRACT

In the skeleton-based human action recognition domain, the spatial-temporal graph convolution networks (ST-GCNs) have made great progress recently. However, they use only one fixed temporal convolution kernel, which is not enough to extract the temporal cues comprehensively. Moreover, simply connecting the spatial graph convolution layer (GCL) and the temporal GCL in series is not the optimal solution. To this end, we propose a novel enhanced spatial and extended temporal graph convolutional network (EE-GCN) in this paper. Three convolution kernels with different sizes are chosen to extract the discriminative temporal features from shorter to longer terms. The corresponding GCLs are then concatenated by a powerful yet efficient one-shot aggregation (OSA) + effective squeeze-excitation (eSE) structure. The OSA module aggregates the features from each layer once to the output, and the eSE module explores the interdependency between the channels of the output. Besides, we propose a new connection paradigm to enhance the spatial features, which expand the serial connection to a combination of serial and parallel connections by adding a spatial GCL in parallel with the temporal GCLs. The proposed method is evaluated on three large scale datasets, and the experimental results show that the performance of our method exceeds previous state-of-the-art methods.


Subject(s)
Algorithms , Movement , Neural Networks, Computer , Skeleton/physiology , Humans
7.
J Med Syst ; 43(1): 2, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30456668

ABSTRACT

Renal segmentation is one of the most fundamental and challenging task in computer aided diagnosis systems. In order to overcome the shortcomings of automatic kidney segmentation based on deep network for abdominal CT images, a two-stage semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow transformation is proposed in paper, which is divided into two stages: image retrieval and semantic segmentation. To facilitate the image retrieval, a metric learning-based approach is firstly adopted to construct a deep convolutional neural network structure using SCNN and ResNet network to extract image features and minimize the impact of interference factors on features, so as to obtain the ability to represent the abdominal CT scan image with the same angle under different imaging conditions. And then, SIFT Flow transformation is introduced, which adopts MRF to fuse label information, priori spatial information and smoothing information to establish the dense matching relationship of pixels so that the semantics can be transferred from the known image to the target image so as to obtain the semantic segmentation result of kidney and space-occupying lesion area. In order to validate effectiveness and efficiency of our proposed method, we conduct experiments on self-establish CT dataset, focus on kidney organ and most of which have tumors inside of the kidney, and abnormal deformed shape of kidney. The experimental results qualitatively and quantitatively show that the accuracy of kidney segmentation is greatly improved, and the key information of the proportioned tumor occupying a small area of the image are exhibited a good segmentation results. In addition, our algorithm has also achieved ideal results in the clinical verification, which is suitable for intelligent medicine equipment applications.


Subject(s)
Diagnosis, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Machine Learning , Neural Networks, Computer , Humans , Pattern Recognition, Automated , Tomography, X-Ray Computed
8.
Comput Intell Neurosci ; 2018: 1723191, 2018.
Article in English | MEDLINE | ID: mdl-29780408

ABSTRACT

Distributed Compressed Sensing (DCS) is an important research area of compressed sensing (CS). This paper aims at solving the Distributed Compressed Sensing (DCS) problem based on mixed support model. In solving this problem, the previous proposed greedy pursuit algorithms easily fall into suboptimal solutions. In this paper, an intelligent grey wolf optimizer (GWO) algorithm called DCS-GWO is proposed by combining GWO and q-thresholding algorithm. In DCS-GWO, the grey wolves' positions are initialized by using the q-thresholding algorithm and updated by using the idea of GWO. Inheriting the global search ability of GWO, DCS-GWO is efficient in finding global optimum solution. The simulation results illustrate that DCS-GWO has better recovery performance than previous greedy pursuit algorithms at the expense of computational complexity.


Subject(s)
Algorithms , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...