Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Medicine (Baltimore) ; 103(18): e37968, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701290

ABSTRACT

To investigate the relationship between several factors and urinary stone as well as different stone compositions. To guide the diagnosis, treatment, and prevention of urinary stone recurrence. We used bidirectional Mendelian randomization to analyze the causal relationship between hypertension and urinary stones, diabetes and urinary stones, and body mass index (BMI) and urinary stones. We retrospectively analyzed the medical records of patients with urinary stones admitted to a tertiary care hospital in Chongqing, China, from July 2015 to October 2022. Patients were included when they were first diagnosed with urinary stones. The odds ratio of calculi on hypertension estimated by inverse variance weighted was 8.46 (95%CI: 4.00-17.90, P = 2.25 × 10-8). The stone composition analysis showed that there were 3101 (67.02%) mixed, 1322 (28.57%) calcium oxalate monohydrate, 148 (3.20%) anhydrous uric acid, 16 (0.35%) magnesium ammonium phosphate hexahydrate, 11 (0.24%) dicalcium phosphate dihydrate, 10 (0.22%) carbonate apatite, 8 (0.17%) L-cystine, 4 ammonium uric acid (0.09%), and 7 other stone types (0.15%). Mendelian randomization studies have proven that urinary stones may be a potential risk factor for hypertension, while there is no causal relationship between diabetes and stones, BMI, and stones. Our retrospective study has shown that urinary stone components are closely associated with sex, age, hypertension, diabetes, and BMI. It is reasonable to suspect that treating a single stone component is ineffective in preventing recurrence. We also found that the peak incidence of urinary stones was at the most active stage of most people's working lives.


Subject(s)
Body Mass Index , Hypertension , Mendelian Randomization Analysis , Urolithiasis , Humans , Retrospective Studies , Male , Female , Middle Aged , China/epidemiology , Hypertension/epidemiology , Urolithiasis/epidemiology , Urolithiasis/genetics , Adult , Risk Factors , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , Aged , Urinary Calculi/genetics , Urinary Calculi/epidemiology
2.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Article in English | MEDLINE | ID: mdl-38593488

ABSTRACT

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Subject(s)
Homeostasis , Phospholipase D , Plant Proteins , Populus , Salt Stress , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Phospholipase D/metabolism , Phospholipase D/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plants, Genetically Modified , Populus/metabolism , Populus/genetics , Populus/drug effects , Reactive Oxygen Species/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques
3.
Plant Sci ; 344: 112082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583807

ABSTRACT

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.


Subject(s)
Arabidopsis , Cadmium , Gene Expression Regulation, Plant , Populus , Promoter Regions, Genetic , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Populus/genetics , Populus/metabolism , Cadmium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Plant Roots/metabolism , Plant Roots/genetics
4.
Environ Pollut ; 348: 123825, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38513946

ABSTRACT

Carbon-driven advanced oxidations show great potential in water purification, but regulating structures and properties of carbon-based catalysts to achieve ultrafast Fenton-like reactions remains challenging. Herein, a biomorphic diatomite-based catalyst (BD-C) with Si-O doping was prepared using natural diatomite as silicon source and porous template. The results showed that the metal-free BD-C catalyst exhibited ultrafast oxidation performances (0.95-2.58 min-1) towards a variety of pollutants in PMS-based Fenton-like reaction, with the Fenton-like activity of metal-free catalyst comparable to metal-based catalysts or even single-atom catalysts. Pollutants (e.g., CP, BPA, TC, and PCM) with electron-donating groups exhibited extremely low PMS decomposition with overwhelmed electron transfer process (ETP), while high PMS consumption was induced by the addition of electron-withdrawing pollutants (e.g., MNZ and ATZ), which was dominated by radical oxidation. The BD-C/PMS system also showed a high ability to resist the environmental interference. In-depth theoretical investigations demonstrated that the coordination of Si-O can lower the potential barrier of PMS activation for accelerating the generation of radicals, and also promote the electron transfer from pollutants to the BD-C/PMS complexes. In addition, BD-C was deposited onto a polytetrafluoroethylene membrane (PTFEM) with 100% of pollutants removal over 10 h, thereby revealing the promising prospects of utilizing BD-C for practical applications.


Subject(s)
Carbon , Diatomaceous Earth , Environmental Pollutants , Oxidation-Reduction , Electron Transport , Peroxides
5.
J Hazard Mater ; 469: 133924, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452671

ABSTRACT

Peroxymonosulfate (PMS) oxidation reactions have been extensively studied recently. Due to the high material cost and low catalytic capability, PMS oxidation technology cannot be effectively applied in an industrial water treatment process. In this work, we developed a modification strategy based on enhancing the neglected electron tunneling effect to optimize the intrinsic electron transport process of the catalyst. The 2D nitrogen-doped carbon-based nanosheets with small interlayer spacing were prepared by self-polymerization of dopamine hydrochloride inserted into the natural layered bentonite template. Systematic characterizations confirmed that the smaller layer spacing in the 2D nitride-doped carbon-based nanosheets reduces the depletion layer width. The weak electronic shielding effect derived by the small layer spacing on the material subsurface enhanced the bulk electron tunneling effect. More bulk electrons could be migrated to the catalyst surface to activate PMS molecules. The PMS activation system showed ultrafast oxidation capability to degrade organic pollutants and strong ability to resist interference from environmental matrixes due to the optimized electron transfer process. Furthermore, the developed membrane reactor exhibited strong catalytic stability during the continuous degradation of P-Chlorophenol (CP).

6.
Psychol Res Behav Manag ; 17: 1191-1203, 2024.
Article in English | MEDLINE | ID: mdl-38505349

ABSTRACT

Purpose: With the rise of big data, deep learning neural networks have garnered attention from psychology researchers due to their ability to process vast amounts of data and achieve superior model fitting. We aim to explore the predictive accuracy of neural network models and linear mixed models in tracking data when subjective variables are predominant in the field of psychology. We separately analyzed the predictive accuracy of both models and conduct a comparative study to further investigate. Simultaneously, we utilized the neural network model to examine the influencing factors of problematic internet usage and its temporal changes, attempting to provide insights for early interventions in problematic internet use. Patients and Methods: This study compared longitudinal data of junior high school students using both a linear mixed model and a neural network model to ascertain the efficacy of these two methods in processing psychological longitudinal data. Results: The neural network model exhibited significantly smaller errors compared to the linear mixed model. Furthermore, the outcomes from the neural network model revealed that, when analyzing data from a single time point, the influences of seventh grade better predicted Problematic Internet Use in ninth grade. And when analyzing data from multiple time points, the influences of sixth, seventh, and eighth grades more accurately predicted Problematic Internet Use in ninth grade. Conclusion: Neural network models surpass linear mixed models in precision when predicting and analyzing longitudinal data. Furthermore, the influencing factors in lower grades provide more accurate predictions of Problematic Internet Use in higher grades. The highest prediction accuracy is attained through the utilization of data from multiple time points.

7.
Front Immunol ; 15: 1258475, 2024.
Article in English | MEDLINE | ID: mdl-38352883

ABSTRACT

Background: Given the lack of research on disulfidptosis, our study aimed to dissect its role in pan-cancer and explore the crosstalk between disulfidptosis and cancer immunity. Methods: Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745, GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression, and multivariate Cox regression were used to construct the rough gene signature based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed by correlation analysis, were harnessed to explore the linkage between disulfidptosis and cancer immunity. Weighted correlation network analysis (WGCNA) and Machine learning were utilized to make a refined prognosis model for pan-cancer. In particular, a customized, enhanced prognosis model was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed to validate the function of c-MET. Results: The expression comparison of the disulfidptosis-related genes (DRGs) between tumor and nontumor tissues implied a significant difference in most cancers. The correlation between disulfidptosis and immune cell infiltration, including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene signature was constructed as the rough model for the glioma prognosis. A pan-cancer suitable DSP clustering was made and validated to predict the prognosis. Furthermore, two DSP groups were defined by machine learning to predict the survival and immune therapy response in glioma, which was validated in CGGA. PD-L1 and other immune pathways were highly enriched in the core blue gene module from WGCNA. Among them, c-MET was validated as a tumor driver gene and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells. Conclusion: To summarize, we dissected the roles of DRGs in the prognosis and their relationship with immunity in pan-cancer. A general prognosis model based on machine learning was constructed for pan-cancer and validated by external datasets with a consistent result. In particular, a survival-predicting model was made specifically for patients with glioma to predict its survival and immune response to ICIs. C-MET was screened and validated for its tumor driver gene and immune regulation function (inducing t-cell exhaustion) in glioma.


Subject(s)
Glioma , T-Cell Exhaustion , Humans , B7-H1 Antigen , Artificial Intelligence , Oncogenes , Glioma/genetics , Immunity
8.
Tree Physiol ; 44(3)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38366380

ABSTRACT

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Subject(s)
Ammonium Compounds , Populus , Nitrates/metabolism , Sodium Chloride/pharmacology , Populus/metabolism , Plant Roots/physiology , Ammonium Compounds/metabolism , Membrane Transport Proteins , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/pharmacology , Nitrogen/metabolism
9.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396725

ABSTRACT

The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.


Subject(s)
Populus , Salt Tolerance , Salt Tolerance/genetics , Populus/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/metabolism , Ions/metabolism , Sodium/metabolism , Homeostasis , Adenosine Triphosphatases/metabolism , Antiporters/metabolism , Photosynthesis/genetics , Gene Expression Regulation, Plant
10.
Proc Natl Acad Sci U S A ; 121(3): e2313387121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190529

ABSTRACT

The studies on the origin of versatile oxidation pathways toward targeted pollutants in the single-atom catalysts (SACs)/peroxymonosulfate (PMS) systems were always associated with the coordination structures rather than the perspective of pollutant characteristics, and the analysis of mechanism commonality is lacking. In this work, a variety of single-atom catalysts (M-SACs, M: Fe, Co, and Cu) were fabricated via a pyrolysis process using lignin as the complexation agent and substrate precursor. Sixteen kinds of commonly detected pollutants in various references were selected, and their lnkobs values in M-SACs/PMS systems correlated well (R2 = 0.832 to 0.883) with their electrophilic indexes (reflecting the electron accepting/donating ability of the pollutants) as well as the energy gap (R2 = 0.801 to 0.840) between the pollutants and M-SACs/PMS complexes. Both the electron transfer process (ETP) and radical pathways can be significantly enhanced in the M-SACs/PMS systems, while radical oxidation was overwhelmed by the ETP oxidation toward the pollutants with lower electrophilic indexes. In contrast, pollutants with higher electrophilic indexes represented the weaker electron-donating capacity to the M-SACs/PMS complexes, which resulted in the weaker ETP oxidation accompanied with noticeable radical oxidation. In addition, the ETP oxidation in different M-SACs/PMS systems can be regulated via the energy gaps between the M-SACs/PMS complexes and pollutants. As a result, the Fenton-like activities in the M-SACs/PMS systems could be well modulated by the reaction pathways, which were determined by both electrophilic indexes of pollutants and single-atom sites. This work provided a strategy to establish PMS-based AOP systems with tunable oxidation capacities and pathways for high-efficiency organic decontamination.

11.
Front Pharmacol ; 14: 1310339, 2023.
Article in English | MEDLINE | ID: mdl-38143499

ABSTRACT

Background: The work aimed to compare the pharmacokinetic (PK) profiles and other outcomes reported in observational studies in de novo kidney transplant recipients (KTRs) receiving novel once-daily extended-release tablet tacrolimus (LCPT; LCP-tacrolimus; Envarsus XR) or receiving standard-of-care capsule tacrolimus (PR-Tac; prolonged-release tacrolimus; Advagraf/IR-Tac; immediate-release tacrolimus; Prograf). Methods: A systematic review was conducted for all randomized controlled trials (RCTs) and cohort studies investigating the outcomes in KTRs receiving LCPT or PR-Tac/IR-Tac. We systematically searched PubMed, Web of Science, and EMBASE, with no language restriction. The registered trials and references listed in relevant studies were also searched. Data were extracted for the PK profile, tacrolimus trough level (TTL), and changes in the estimated glomerular filtration rate (eGFR) and serum creatinine (Scr), biopsy-proven acute rejection (BPAR) rate, delayed graft function (DGF) rate, post-transplant diabetes mellitus (PTDM) rate, tremor rate (TR), death rate (DR), and rate of infection by cytomegalovirus (CMV). This study was registered with PROSPERO (registration number: CRD42023403787). Results: A total of seven eligible articles including 1,428 patients with 712 in the LCPT group versus 716 in the PR-Tac/IR-Tac group were included in this study for evidence synthesis. The baseline characteristics of the LCPT, PR-Tac, and IR-Tac groups were similar. The pooled analysis showed a higher PK profile in the LCPT group, and this result was consistent with those of all the included studies. In addition, no significant difference was observed for other outcomes. Conclusion: Considering heterogeneity between studies and potential bias, care providers should select agents based on patient-specific factors and their clinical experience for the immunosuppressive treatment of de novo KTRs.

12.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175914

ABSTRACT

High NaCl (200 mM) increases the transcription of phospholipase Dδ (PLDδ) in roots and leaves of the salt-resistant woody species Populus euphratica. We isolated a 1138 bp promoter fragment upstream of the translation initiation codon of PePLDδ. A promoter-reporter construct, PePLDδ-pro::GUS, was introduced into Arabidopsis plants (Arabidopsis thaliana) to demonstrate the NaCl-induced PePLDδ promoter activity in root and leaf tissues. Mass spectrometry analysis of DNA pull-down-enriched proteins in P. euphratica revealed that PeGLABRA3, a basic helix-loop-helix transcription factor, was the target transcription factor for binding the promoter region of PePLDδ. The PeGLABRA3 binding to PePLDδ-pro was further verified by virus-induced gene silencing, luciferase reporter assay (LRA), yeast one-hybrid assay, and electrophoretic mobility shift assay (EMSA). In addition, the PeGLABRA3 gene was cloned and overexpressed in Arabidopsis to determine the function of PeGLABRA3 in salt tolerance. PeGLABRA3-overexpressed Arabidopsis lines (OE1 and OE2) had a greater capacity to scavenge reactive oxygen species (ROS) and to extrude Na+ under salinity stress. Furthermore, the EMSA and LRA results confirmed that PeGLABRA3 interacted with the promoter of AtPLDδ in transgenic plants. The upregulated AtPLDδ in PeGLABRA3-transgenic lines resulted in an increase in phosphatidic acid species under no-salt and saline conditions. We conclude that PeGLABRA3 activated AtPLDδ transcription under salt stress by binding to the AtPLDδ promoter region, conferring Na+ and ROS homeostasis control via signaling pathways mediated by PLDδ and phosphatidic acid.


Subject(s)
Arabidopsis , Populus , Salt Tolerance/genetics , Populus/genetics , Populus/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
13.
Article in English | MEDLINE | ID: mdl-36257570

ABSTRACT

Selenium deficiency can lead to multiple tissue and organ damage in the body and could coexist with chronic toxic exposures. Contamination from Bisphenol A (BPA) exposure can induce the occurrence of various injuries including pyroptosis. However, it is not clear whether selenium deficiency and BPA exposure affect tracheal tissue pyroptosis in chickens. To investigate whether selenium deficiency and BPA exposure induce chicken tracheal tissue pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway and the effect of their combined exposure on tissue injury, we developed a model of relevant chicken tracheal injury. Sixty broilers were divided into four groups: the control group (C group), selenium-deficient group (SeD group), BPA-exposed group (BPA group) and combined exposure group (SeD + BPA group). The study examined the expression indicators of markers of pyroptosis (NLRP3&GSDMD), NF-κB pathway-related inflammatory factors (NF-κB, iNOS, TNF-α, COX-2), pyroptosis-related factors (ASC, Caspase-1, IL-1ß, IL-18), and some heat shock proteins and interleukins (HSP60, HSP90, IL-6, IL-17) in the samples. The results showed that the expression of the above indicators was significantly upregulated in the different treatment groups (P < 0.05). In addition, the expression levels of the above related indicators were more significantly up-regulated in the combined selenium-deficient and BPA-exposed group compared to the group in which they were individually exposed. It was concluded that selenium deficiency and BPA exposure induced tracheal tissue pyroptosis in chickens through NF-κB/NLRP3/Caspase-1 pathway, and BPA exposure exacerbated selenium deficiency-induced tracheal pyroptosis. The present study provides new ideas into studies related to the co-exposure of organismal micronutrient deficiency and chronic toxicants.


Subject(s)
Pyroptosis , Selenium , Animals , NF-kappa B/metabolism , Caspase 1/metabolism , Caspase 1/pharmacology , Chickens/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Selenium/pharmacology , Trachea
14.
Fish Shellfish Immunol ; 132: 108501, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36566834

ABSTRACT

Tetrabromobisphenol A (TBBPA) is one of the most common and persistent organic pollutants found in the environment. When TBBPA is ingested by organisms through various pathways and stored in the body, it shows obvious harmful effects. Selenium (Se) works as an antioxidant in the body, allowing it to withstand the poisonous effects of dangerous substances. The effects and mechanisms of Se and TBBPA on carp neutrophil immune function, apoptosis, and necroptosis, however, are unknown. As a result, we created TBBPA exposure and Se antagonism models using carp neutrophils as study objects, and we investigated the expression of genes implicated in extracellular traps (NETs), cytokines, apoptosis, and necroptosis. The findings demonstrated that extracellular traps neutrophils in the TBBPA group displayed the inhibition of NETs, apoptosis, and necrosis, as well as an increase in Reactive oxygen species (ROS) levels and activation of the MAPK pathway. The expression of genes related to the mitochondrial apoptosis pathway (Bax, Cyt-c, Bcl-2 and Caspase-3) and necroptosis pathway (MLKL, RIPK1, RIPK3, Caspase-8 and FADD) were activated. The expression of inflammatory factors IL-1 and TNF-α were increased, and the expression of IL-2 and IFN-γ were decreased. But an appropriate concentration of Se can mitigate the effects of TBBPA. Our results suggest that Se can mitigate the inhibitory effect of TBBPA on NETs release by regulating apoptosis and necroptosis of carp neutrophil via ROS/MAPK pathways. These results provide a basis information for exploring the toxicity of TBBPA, and enrich the anti-toxicity mechanism of trace element Se in the body.


Subject(s)
Carps , Extracellular Traps , Selenium , Animals , Neutrophils , Selenium/pharmacology , Selenium/metabolism , Reactive Oxygen Species/metabolism , Carps/metabolism , Necroptosis , Apoptosis
15.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563299

ABSTRACT

Phospholipase Dα (PLDα), which produces signaling molecules phosphatidic acid (PA), has been shown to play a critical role in plants adapting to salt environments. However, it is unclear whether phospholipase Dδ (PLDδ) can mediate the salt response in higher plants. PePLDδ was isolated from salt-resistant Populus euphratica and transferred to Arabidopsis thaliana to testify the salt tolerance of transgenic plants. The NaCl treatment (130 mM) reduced the root growth and whole-plant fresh weight of wild-type (WT) A. thaliana, vector controls (VC) and PePLDδ-overexpressed lines, although a less pronounced effect was observed in transgenic plants. Under salt treatment, PePLDδ-transgenic Arabidopsis exhibited lower electrolyte leakage, malondialdehyde content and H2O2 levels than WT and VC, resulting from the activated antioxidant enzymes and upregulated transcripts of genes encoding superoxide dismutase, ascorbic acid peroxidase and peroxidase. In addition, PePLDδ-overexpressed plants increased the transcription of genes encoding the plasma membrane Na+/H+ antiporter (AtSOS1) and H+-ATPase (AtAHA2), which enabled transgenic plants to proceed with Na+ extrusion and reduce K+ loss under salinity. The capacity to regulate reactive oxygen species (ROS) and K+/Na+ homeostasis was associated with the abundance of specific PA species in plants overexpressing PePLDδ. PePLDδ-transgenic plants retained a typically higher abundance of PA species, 34:2 (16:0-18:2), 34:3 (16:0-18:3), 36:4 (18:2-18:2), 36:5 (18:2-18:3) and 36:6 (18:3-18:3), under control and saline conditions. It is noteworthy that PA species 34:2 (16:0-18:2), 34:3 (16:0-18:3), 36:4 (18:2-18:2) and 36:5 (18:2-18:3) markedly increased in response to NaCl in transgenic plants. In conclusion, we suppose that PePLDδ-derived PA enhanced the salinity tolerance by regulating ROS and K+/Na+ homeostasis in Arabidopsis.


Subject(s)
Arabidopsis , Populus , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Homeostasis , Hydrogen Peroxide/metabolism , Peroxidases/metabolism , Phospholipases/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Populus/genetics , Populus/metabolism , Proton-Translocating ATPases/genetics , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Sodium/metabolism , Sodium Chloride/metabolism
16.
J Public Health Res ; 10(1)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33849254

ABSTRACT

BACKGROUND: A key challenge in estimating epidemiological parameters for a pandemic such as the initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported number of infections and the true number of infections. A common approach to tackling the challenge is to use the number of infections exported from the originating city to infer the true number. This approach can only provide a static estimate of the epidemiological parameters before city lockdown because there are almost no exported cases thereafter. METHODS: We propose a Bayesian estimation method that dynamically estimates the epidemiological parameters by recovering true numbers of infections from day-to-day official numbers. To illustrate the use of this method, we provide a comprehensive retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March 5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5 were 11,239 [95% CI 4,794-22,372] and 124,506 [95% CI 69,526-265,113], respectively. RESULTS: The effective reproduction number attained its maximum on January 24 (3.42 [95% CI 3.34-3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65-0.92]). We also estimate the effects of two major government interventions on the spread of COVID-19 in Wuhan. CONCLUSIONS: This case study by our proposed method affirms the believed importance and effectiveness of imposing tight non-essential travel restrictions and affirm the importance and effectiveness of government interventions (e.g., transportation suspension and large scale hospitalization) for effective mitigation of COVID-19 community spread.

17.
Biochem Biophys Res Commun ; 526(4): 1100-1105, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32307082

ABSTRACT

There is a growing body of evidence that abscisic acid (ABA) and the phytochrome-interacting factor (PIF) family of transcription factors interact in light signaling, the regulation of plant growth development, and adaptation to environmental stimuli. In this study, we investigate the role that PIFs play in the regulation of ABA signaling in Arabidopsis thaliana seedlings grown under long-day conditions. We showed that PIFs positively regulate ABA signaling in post-germination seedling growth. We analyzed the DNA-binding sites for PIF3 and PIF5 by DNA-affinity purification sequencing (DAP-seq) genome-wide. The DAP-seq data showed that G-box motif is the direct binding site of PIF3 and PIF5, and a number of ABA responsive genes are potential targets of PIFs, including PYL3, PYL6, PYL12, SnRK2.2, CPK4, CPK6, ABI5, ABF3, and KIN1. Our results provide a basis for understanding the mechanism for PIFs in regulating ABA signal transduction.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phytochrome/metabolism , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Base Sequence , Binding Sites , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Loss of Function Mutation/genetics , Nucleotide Motifs/genetics , Seedlings/drug effects
18.
Sci Rep ; 10(1): 710, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959758

ABSTRACT

There are about half of papillary thyroid carcinoma (PTC) patients with the experience of central lymph node metastasis (CLNM), while the model to predict high-risk groups of CLNM from PTC patients is uncertain. The aim of this study was to evaluate candidate risk factors of CLNM and identify risk factors of recurrence to guide the postoperative therapeutic decision and follow-up for physicians and patients.A total of 4107 patients(4884 lesions) who underwent lymph node dissection in two hospitals from 2005 to 2014 were evaluated. CLNM risk was stratified and a risk-scoring model was developed on the basis of the identified independent risk factors for CLNM. Cox's proportional hazards regression model was used to investigate the risk factors for recurrence.CLNM was proved in 37.96% (1559/4107) of patients and 33.96% (1659/4884) of lesions. In the multivariate analysis, Male, Age ≤35 years, Tumor size >0.5 cm,Lobe dissemination (+), Psammoma body (+), Multifocality and Capsule invasion (+) were independent risk predictors of CLNM (P < 0.01). A 14-point risk-scoring model was built to predict the stratified CLNM in PTC patients and the area under receiver operating characteristic curve of the model for the prediction of CLNM was 0.672 (95% CI: 0.656-0.688) (P < 0.01). COX regression model showed that Tumor size >0.5 cm, Lobe dissemination (+), Multifocality and CLNM were significant risk factors associated with poor outcomes. The research suggested that prophylactic CLN dissection could be performed in patients with total score ≥4 according to the risk-scoring model, and more aggressive treatment and more frequent follow-up should be considered for patients with Tumor size >0.5 cm, Lobe dissemination (+), Multifocality and CLNM.


Subject(s)
Lymphatic Metastasis , Neoplasm Recurrence, Local , Proportional Hazards Models , Thyroid Cancer, Papillary/surgery , Thyroid Neoplasms/surgery , Adult , Aged , Female , Follow-Up Studies , Forecasting , Humans , Male , Middle Aged , ROC Curve , Risk Factors , Treatment Outcome
19.
Int J Clin Exp Pathol ; 11(11): 5359-5369, 2018.
Article in English | MEDLINE | ID: mdl-31949617

ABSTRACT

This study sought to investigate minichromosome maintenance protein 3 (MCM3) and minichromosome maintenance protein 7 (MCM7) expression in salivary adenoid cystic carcinoma (SACC) samples, and to evaluate the relationship between clinicopathological characteristics and prognosis. The expressions of MCM3 and MCM7 were evaluated using immunohistochemistry of tissue sections from SACC patients, and statistical analyses were performed to evaluate the associations between MCM expression and clinicopathological variables and to analyze the disease-free survival (DFS) and prognostic factors. The positive expression rates of MCM3 and MCM7 in SACC were 98.8% and 96.6%, respectively. MCM3 expression correlated with T-stage and nerve invasion. MCM7 expression correlated with T-stage, adjacent tissue invasion, nerve invasion, and prognosis, and was negatively associated with DFS. However, there was no significant correlation between MCM3 expression and DFS. A kappa analysis demonstrated that MCM3 was closely associated with MCM7. MCM7 may be a favorable prognosis indicator in SACC.

20.
Sheng Wu Gong Cheng Xue Bao ; 32(1): 95-104, 2016 Jan.
Article in Chinese | MEDLINE | ID: mdl-27363202

ABSTRACT

Recombinant Fl-V (rFl-V) fusion protein is the main ingredient of the current candidate vaccine against Yersinia pestis infection, which has been under investigation in clinical trial in USA. We investigated the soluble expression conditions of rF1-V in Escherichia coli BL21 (DE3) that we constructed before. After scale-up and optimization of fermentation processes, we got the optimized fermentation process parameters: the culture was induced at the middle exponential phase with 50 µmol/L of IPTG at 25 °C for 5 h. Soluble rFl-V protein was isolated to 99% purity by ammonium sulfate precipitation, ion exchange chromatography, hydrophobic chromatography and gel filter chromatography. The protein recovery was above 20%. Protein identity and primary structure were verified by mass spectrometry and Edman sequencing. Results of purity, quality and western blotting analysis indicated that the target protein is a consistent and properly folded product. Furthermore, the immunogenicity of various antigens formulated with aluminum hydroxide adjuvant was evaluated in mice. Serum antibody titers of 4 groups including 20 µg rFl, rV and rFl-V and 10 µg rFl+10 µg rV, were assayed by ELISA after 2 doses. The antibody titers of anti-Fl with 20 µg rFl-V were obviously higher than titers with other groups; meanwhile there were no significant difference of anti-V antibody titers among them. These findings confirm that rFl-V would be the active pharmaceutical ingredient of the plague subunit vaccine.


Subject(s)
Antigens, Bacterial/immunology , Plague Vaccine/immunology , Recombinant Fusion Proteins/immunology , Yersinia pestis , Adjuvants, Immunologic , Animals , Antibodies, Bacterial/blood , Antibody Formation , Blotting, Western , Chromatography, Ion Exchange , Enzyme-Linked Immunosorbent Assay , Mice , Plague/prevention & control , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...