Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(12): 19917-19923, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34860001

ABSTRACT

The ability to control the propagation direction of light has long been a scientific goal. However, the fabrication of large-scale optical angular-range selective films is still a challenge. This paper presents a polymer-enabled large-scale fabrication method for broadband angular-range selective films that perform over the entire visible spectrum. Our approach involves stacking together multiple one-dimensional photonic crystals with various engineered periodicities to enlarge the bandgap across a wide spectral range based on theoretical predictions. Experimental results demonstrate that our method can achieve broadband transparency at a range of incident angles centered around normal incidence and reflectivity at larger viewing angles, doing so at large scale and low cost.

2.
Nat Commun ; 12(1): 5554, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548482

ABSTRACT

Cherenkov detectors enable a valuable tool to identify high-energy particles. However, their sensitivity and momentum coverage are limited by the refractive index of host materials. Especially, identifying particles with energy above multiple gigaelectronvolts requires host materials with a near-unity refractive index, which are limited to bulky gas chambers. Overcoming this fundamental material limit is important for future particle detectors yet remains a long-standing challenge. Here, we propose a different paradigm for Cherenkov detectors that utilizes the broadband angular filter made from stacks of variable one-dimensional photonic crystals. Owing to the Brewster effect, the angular filter is transparent only to Cherenkov photons from a precise incident angle. Particle identification is achieved by mapping each Cherenkov angle to the peak-intensity position of transmitted photons in the detection plane. Such angular filtering effect, although decreases the photon number collected in the detection plane, enables the realization of a non-dispersive pseudo refractive index over the entire visible spectrum. Moreover, the pseudo refractive index can be flexibly designed to different values close to unity. Our angular-selective Brewster paradigm offers a feasible solution to implement compact and highly sensitive Cherenkov detectors especially in beam lines with a small angular divergence using regular dielectrics.

3.
Small ; 14(22): e1800115, 2018 05.
Article in English | MEDLINE | ID: mdl-29700977

ABSTRACT

Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer-Peppas model and Finite-element analysis, are also employed to discern the observed guest-release mechanisms.

4.
ACS Appl Mater Interfaces ; 8(21): 13555-66, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27163929

ABSTRACT

Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...