Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571086

ABSTRACT

Phase change materials (PCMs), which can absorb and release large amounts of latent heat during phase change, have been extensively studied for heat storage and thermal management. However, technical bottlenecks regarding low thermal conductivity and leakage have hindered practical applications of PCMs. In this paper, a simple, economical, and scalable absorption polymerization technique is proposed to prepare the polymethyl methacrylate/propyl palmitate/expanded graphite (MPCM/EG) phase change composites by constructing the microencapsulated phase change materials (polymethyl methacrylate/propyl palmitate, MPCM) with core-shell structures in the three-dimensional (3D) EG networks, taking propyl palmitate as the PCM core, polymethyl methacrylate (PMMA) as the shell, and long-chain "worm-like" EG as the thermally conductive networks. This technique proved to be a more appropriate combinatorial pathway than direct absorption of MPCM via EG. The MPCM/EG composites with high thermal conductivity, high enthalpy, excellent thermal stability, low leakage, and good thermal cycle reliability were prepared. The results showed that the MPCM-80/EG-10 composite demonstrated a high thermal conductivity of 3.38 W/(m·K), a phase change enthalpy up to 152.0 J/g, an encapsulation ratio of 90.3%, outstanding thermal stability performance, and long-term thermal cycle reliability when the EG loading is 10% and propyl palmitate is 80%. This research offers an easy and efficient approach for designing and fabricating phase change composites with promising applications in diverse energy-saving fields, such as renewable energy collection, building energy conservation, and microelectronic devices thermal protection.

2.
Nanotechnology ; 29(34): 345607, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-29920185

ABSTRACT

Developing a facile strategy to synthesize template-free TiO2 membrane with stable super-hydrophilic surface is still a daunting challenge. In this work, super-hydrophilicity (close to 0°) and underwater super-oleophobicity (165°) have been successfully demonstrated on a hierarchical Al2O3/TiO2 membrane, which is prepared via a facile electrospinning method followed by simple calcination in air. The precisely-tuned Al2O3 heterojunctions grew in situ and dispersed uniformly on the TiO2 surface, resulting in an 'island in the sea' configuration. Such a unique feature allows not only achieving super-hydrophilicity by maximizing the surface roughness and enhancing the hydrogen bonding, but also improving the adsorption capacity toward different toxic dyes utilizing the abundant adsorption sites protected by the hierarchical nanostructure during sintering. The new Al2O3/TiO2 nanofibrous membrane can serve as a novel filter for gravity driven oil/water separation along with dye removal, achieving 97.7% of oil/water separation efficiency and 98% of dye capture, thanks to their superb wettability and the sophisticated adsorptive performance. Our presented fabrication strategy can be extended to a wide range of ceramic materials and inspires their advanced applications in water purification under harsh liquid-phase environments.

3.
Article in English | MEDLINE | ID: mdl-26357275

ABSTRACT

The Local/Global Alignment (Zemla, 2003), or LGA, is a popular method for the comparison of protein structures. One of the two components of LGA requires us to compute the longest common contiguous segments between two protein structures. That is, given two structures A = (a1, ... ,a(n)) and B = (b1, ... ,b(n)) where a(k), b(k) ∈ ℝ(3), we are to find, among all the segments f = (a(i), ... ,a(j)) and g = (b(i), ... ,b(j)) that fulfill a certain criterion regarding their similarity, those of the maximum length. We consider the following criteria: (1) the root mean squared deviation (RMSD) between f and g is to be within a given t ∈ ℝ; (2) f and g can be superposed such that for each k, i ≤ k ≤ j, ||a(k) - b(k)|| ≤ t for a given t ∈ ℝ. We give an algorithm of O(n log n + nl) time complexity when the first requirement applies, where l is the maximum length of the segments fulfilling the criterion. We show an FPTAS which, for any ϵ ∈ ℝ, finds a segment of length at least l, but of RMSD up to (1 + ϵ)t, in O(n log n + n/ϵ) time. We propose an FPTAS which for any given ϵ ∈ R, finds all the segments f and g of the maximum length which can be superposed such that for each k, i ≤ k ≤ j, ||a(k) - b(k)|| ≤ (1 + ϵ)t, thus fulfilling the second requirement approximately. The algorithm has a time complexity of O(n log(2) n/ϵ(5)) when consecutive points in A are separated by the same distance (which is the case with protein structures). These worst-case runtime complexities are verified using C++ implementations of the algorithms, which we have made available at http://alcs.sourceforge.net/.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Sequence Alignment/methods , Algorithms , Models, Molecular , Protein Conformation , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...