Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 74(10): 1130-1136, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28748273

ABSTRACT

Gut microbiota are integral to the host, and have received increased attention in recent years. However, information regarding the intestinal microbiota of many aquaculture animals is insufficient; elucidating the dynamics of the intestinal microbiota can be beneficial for nutrition, immunity, and disease control. In this study, we used 16S rRNA sequencing to observe changes in the intestinal microbiota of gibel carp (Carassius auratus gibelio) associated with cyprinid herpesvirus 2 (CyHV-2) infection. Our results indicate that the diversity of the intestinal microbiota was strongly reduced, and the composition was dramatically altered following CyHV-2 infection. The most dominant species in healthy fish were Cetobacterium, Rhodobacter, and Crenothrix; meanwhile, Cetobacterium, Plesiomonas, Bacteroides, and Flavobacterium were the most abundant species in sick fish. Plesiomonas was highly abundant in infected samples, and could be used as a microbial biomarker for CyHV-2 infection. Chemical properties of the aquaculture water were significantly correlated with the microbial community structure; however, it is difficult to determine whether these changes are a cause or consequence of infection. However, it may be possible to use probiotics or prebiotics to restore the richness of the host intestinal microbiota in infected animals to maintain host health.


Subject(s)
Fish Diseases/microbiology , Fish Diseases/virology , Gastrointestinal Microbiome , Herpesviridae Infections/veterinary , Herpesviridae , Host-Pathogen Interactions , Animals , Biodiversity , Metagenome , Metagenomics/methods , RNA, Ribosomal, 16S , ROC Curve
2.
J Chem Phys ; 143(20): 204501, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26627962

ABSTRACT

Understanding molecular motion in terms of molecular structure is an important issue for microscopic understanding of the nature of transport properties and glass transition, and for design of structured materials to meet specific demands in various applications. Herein, a novel molecular mechanism is proposed to connect macroscopic motion in ionic liquids with molecular structure via conformational conversions of the constituent ions or of the cation-anion pairs. New equations for description of relaxation time, diffusion coefficient, molar conductivity, and viscosity of ionic liquids are established. The equation parameters, which were determined from the temperature dependent heat capacities, self-diffusion coefficients, molar conductivities, and viscosities of typical ionic liquids, were used to produce predictions for the corresponding properties of other ionic liquids and for the glass transition temperatures of representative ionic liquids. All predictions are in nice agreements with the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...