Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 469: 134096, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522195

ABSTRACT

Arsenic (As)-contaminated soil poses great health risk to human mostly through inadvertent oral exposure. We investigated CaAl-layered double hydroxide (CaAl-LDH), a promising immobilising agent, for the remediation of As-contaminated Chinese soils. The effects on specific soil properties and As fractionation were analyzed, and changes in the health risk of soil As were accurately assessed by means of advanced in vivo mice model and in vitro PBET-SHIME model. Results showed that the application of CaAl-LDH significantly increased soil pH and concentration of Fe and Al oxides, and effectively converted active As fractions into the most stable residual fraction, guaranteeing long-term remediation stability. Based on in vivo test, As relative bioavailability was significantly reduced by 37.75%. Based on in vitro test, As bioaccessibility in small intestinal and colon phases was significantly reduced by 25.65% and 28.57%, respectively. Furthermore, As metabolism (reduction and methylation) by the gut microbiota inhabiting colon was clearly observed. After immobilisation with CaAl-LDH, the concentration of bioaccessible As(Ⅴ) in the colon fluid was significantly reduced by 61.91%, and organic As (least toxic MMA(V) and DMA(V)) became the main species, which further reduced the health risk of soil As. In summary, CaAl-LDH proved to be a feasible option for immobilisation remediation of As-contaminated soils, and considerable progress was made in relevant health risk assessment.


Subject(s)
Arsenic , Soil Pollutants , Animals , Humans , Mice , Arsenic/chemistry , Biological Availability , Soil Pollutants/analysis , Soil/chemistry , Risk Assessment
2.
Sci Total Environ ; 925: 171729, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492589

ABSTRACT

Stabilization of arsenic-contaminated soils with ferrous sulfate has been reported in many studies, but there are few stabilization effects assessments simultaneously combined chemical extraction methods and in vitro methods, and further explored the corresponding alternative relationships. In this study, ferrous sulfate was added at FeAs molar ratio of 0, 5, 10 and 20 to stabilize As in 10 As spiked soils. Stabilization effects were assessed by 6 chemical extraction methods (toxicity characteristic leaching procedures (TCLP), HCl, diethylenetriamine pentaacetic acid (DTPA), CaCl2, CH3COONH4, (NH4)2SO4), and 4 in vitro methods (physiologically based extraction test (PBET), in vitro gastrointestinal method (IVG), Solubility Bioaccessibility Research Consortium (SBRC) method, and the Unified Bioaccessibility Research Group of Europe method (UBM)). The results showed that the HCl method provides the most conservative assessment results in non-calcareous soils, and in alkaline calcareous soils, (NH4)2SO4 method provides a more conservative assessment. In vitro methods provided significantly higher As concentrations than chemical extraction methods. The components of the simulated digestion solution as well as the parameters may have contributed to this result. The small intestinal phase of PBET and SBRC method produced the highest and lowest ranges of As concentrations, and in the range of 127-462 mg/kg and 68-222 mg/kg when the FeAs molar ratio was 5. So the small intestinal phase of PBET method may provide the most conservative assessment results, while the same phase of SBRC may underestimate the human health risks of As in stabilized soil by 51 %(at a FeAs molar ratio of 5). Spearman correlation analysis indicated that the small intestinal phase of PBET method correlated best with HCl method (correlation coefficient: 0.71). This study provides ideas for the assessment of stabilization efforts to ensure that stabilization meets ecological needs while also being less harmful to humans.


Subject(s)
Arsenic , Ferrous Compounds , Soil Pollutants , Humans , Arsenic/analysis , Soil Pollutants/analysis , Environmental Pollution/analysis , Soil , Biological Availability
3.
Food Res Int ; 177: 113853, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225128

ABSTRACT

INFOGEST is a standardized in vitro digestion method suitable for foods, but rarely used to study the bioaccessibility of heavy metals in food. This study aimed to explore the differences between INFOGEST and the extensively used Physiologically Based Extraction Test (PBET) and Unified Bioaccessibility Research Group of Europe Method (UBM) methods for determining the bioaccessibility of As and Cd in rice. Intestinal As (79.3 ± 8.5 %, 75.8 ± 12.7 %, and 72.3 ± 12.2 % for INFOGEST, PBET, and UBM, respectively) and Cd (47.0 ± 6.4 %, 40.7 ± 13.8 %, and 38.1 ± 15.7 % for INFOGEST, PBET, and UBM, respectively) bioaccessibilities in the rice samples determined by the three methods were generally similar (p > 0.1, except for As bioaccessibility between INFOGEST and UBM). Furthermore, PBET was significantly correlated with INFOGEST for As bioaccessibility (R2 = 0.416) and with UBM for Cd bioaccessibility (R2 = 0.879). Additionally, PBET indicated that the bioaccessibilities of As and Cd in the polished rice were 17.0 % and 19.8 % higher, respectively, than that in the unpolished rice. This study highlights the influence of in vitro methods and rice matrices on heavy metal bioaccessibility values, necessitating a more accurate assessment of health risks associated with rice consumption.


Subject(s)
Arsenic , Metals, Heavy , Oryza , Cadmium , Biological Availability
4.
Sci Total Environ ; 900: 165775, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37499825

ABSTRACT

Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.


Subject(s)
Arsenic , Capsicum , Seaweed , Animals , Humans , Arsenic/metabolism , Vegetables/metabolism , Seaweed/metabolism , Digestion
5.
J Hazard Mater ; 456: 131663, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224715

ABSTRACT

Dietary calcium (Ca) intake can alleviate fluoride (F) induced fluorosis to maintain bone health. However, it is unclear whether calcium supplements can reduce the oral bioavailability of F present in contaminated soils. Here we evaluated the effects of Ca supplements on F bioavailability in three soils using an in vitro method (Physiologically Based Extraction Test) and an in vivo mouse model. Seven Ca salts, commonly used in calcium supplements, significantly reduced the F bioaccessibility in the gastric and small intestinal phases. Particularly for Ca phosphate at 150 mg Ca supplementation, F bioaccessibility in the small intestinal phase was reduced from 35.1-38.8% to 0.7-1.9% where soluble F concentrations were less than 1 mg/L. Overall, the eight Ca tablets tested in this study showed greater efficiency at decreasing F solubility. The in vitro bioaccessibility after Ca supplementation was consistent with the relative bioavailability of F. As supported by X-ray photoelectron spectroscopy, a possible mechanism is that freed F can be bound by Ca to form insoluble CaF2 and exchanged with OH groups from Al/Fe hydroxide to strongly adsorb F. These findings provide evidence of Ca supplementation in reducing health risks associated soil F exposure.


Subject(s)
Calcium, Dietary , Dietary Supplements , Fluorides , Soil Pollutants , Animals , Mice , Biological Availability , Calcium , Soil/chemistry , Soil Pollutants/analysis , Fluorosis, Dental/prevention & control
6.
Environ Int ; 174: 107911, 2023 04.
Article in English | MEDLINE | ID: mdl-37030286

ABSTRACT

Gut microbiota provides protection against arsenic (As) induced toxicity, and As metabolism is considered an important part of risk assessment associated with soil As exposures. However, little is known about microbial iron(III) reduction and its role in metabolism of soil-bound As in the human gut. Here, we determined the dissolution and transformation of As and Fe from incidental ingestion of contaminated soils as a function of particle size (<250 µm, 100-250 µm, 50-100 µm and < 50 µm). Colon incubation with human gut microbiota yielded a high degree of As reduction and methylation of up to 53.4 and 0.074 µg/(log CFU/mL)/hr, respectively; methylation percentage increased with increasing soil organic matter and decreasing soil pore size. We also found significant microbial Fe(III) reduction and high levels of Fe(II) (48 %-100 % of total soluble Fe) may promote the capacity of As methylation. Although no statistical change in Fe phases was observed with low Fe dissolution and high molar Fe/As ratios, higher As bioaccessibility of colon phase (avg. 29.4 %) was mainly contributed from reductive dissolution of As(V)-bearing Fe(III) (oxy)hydroxides. Our results suggest that As mobility and biotransformation by human gut microbiota (carrying arrA and arsC genes) are strongly controlled by microbial Fe(III) reduction coupled with soil particle size. This will expand our knowledge on oral bioavailability of soil As and health risks from exposure to contaminated soils.


Subject(s)
Arsenic , Soil Pollutants , Humans , Arsenic/analysis , Ferric Compounds , Soil , Particle Size , Gastrointestinal Tract , Iron/metabolism , Soil Pollutants/analysis
7.
J Hazard Mater ; 445: 130602, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055999

ABSTRACT

The oxidation and immobilization of arsenic (As) by manganese oxides have been shown to reduce As toxicity and bioavailability under abiotic conditions. In this study, we investigate the impact of manganese oxide (δ-MnO2) on the fate of different Fe-minerals-adsorbed As in the presence of As(V)-reducing bacteria Bacillus sp. JQ. Results showed that in the absence of δ-MnO2, As release in goethite was much higher than in ferrihydrite and hematite during microbial reduction. Adding 3.1 mM Mn reduced As release by 0.3%, 46.3%, and 6.7% in the ferrihydrite, goethite, and hematite groups, respectively. However, aqueous As was dominated by As(III) in the end, because the oxidation effect of δ-MnO2 was limited and short-lived. Additionally, the fraction of solid-phase As(V) increased by 9.8% in ferrihydrite, 39.4% in goethite, and 7.4% in hematite in the high-Mn treatments, indicating that δ-MnO2 had the most significant oxidation and immobilization effect on goethite-adsorbed As. This was achieved because goethite particles were evenly distributed on δ-MnO2 surface, which supported As(III) oxidation by δ-MnO2; while ferrihydrite strongly aggregated, which hindered the oxidation of As(III). Our study shows that As-oxidation and immobilization by manganese oxides cannot easily be assessed without considering the mineral composition and microbial conditions of soils.


Subject(s)
Arsenic , Iron , Oxides , Manganese Compounds , Arsenic/metabolism , Manganese , Ferric Compounds , Minerals , Oxidation-Reduction
8.
Food Chem Toxicol ; 175: 113727, 2023 May.
Article in English | MEDLINE | ID: mdl-36925043

ABSTRACT

Arsenic (As) exposure in humans is primarily caused through food and drinking water. Iron (Fe) is one of the most common element of the human and can influence the toxicity and bioavailability of As. However, information on the interaction between As and Fe when present together is limited. In this study, the interaction effects of Fe(III) (0, 3, and 10 mg/L) and As (As(III) at 0, 0.05, 0.1 mg/L, and As(V) at 0, 0.1, and 2 mg/L, respectively) on their absorption and bioavailability in Caco-2 cells were analyzed. As(III) absorption significantly decreased with the addition of Fe, while Fe absorption significantly increased. Compared with 0.1 mg/L As(III) addition alone, 3 and 10 mg/L Fe(III) addition significantly reduced the As(III) absorption by 8.6 and 11 µg/L, respectively. The absorption of As and Fe(III) and the bioavailability of Fe(III) significantly increased with the addition of As(III/V). Compared with 10 mg/L Fe(III) alone, the absorption of As(III) was significantly increased by 1 and 1.3 mg/L with 0.05 and 0.1 mg/L As(III) addition, respectively. Furthermore, the absorption and bioavailability of Fe(III) were significantly increased by 1.2 mg/L and 8% and 1.2 mg/L and 8.2%, respectively, after adding 0.1 and 2 mg/L As(V).


Subject(s)
Arsenic , Iron , Humans , Arsenic/toxicity , Caco-2 Cells , Biological Availability
9.
Environ Health Perspect ; 130(12): 127004, 2022 12.
Article in English | MEDLINE | ID: mdl-36541774

ABSTRACT

BACKGROUND: Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES: This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS: A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO4, CaCO3, Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200-5,000µg/g Ca. The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25(OH)2D3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS: In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO4. In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO4. In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION: Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.


Subject(s)
Arsenic , Cadmium , Animals , Mice , Humans , Biological Availability , Dust , Lead , Minerals , Gluconates , Citrates , RNA, Messenger
10.
Ecotoxicol Environ Saf ; 243: 113968, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35981483

ABSTRACT

Effects of vitamin C supplementation on the oral bioaccessibility of lead (Pb) present in contaminated soils were examined using a number of in vitro assays (PBET, SBRC, UBM and IVG). In the presence of vitamin C, an increase in Pb bioaccessibility was observed in the gastric phase by 1.3-fold (30.5%-85.5%) and in the intestinal phase by 3.1-fold (0.9%-58.9%). Lead mobilization was regulated by reductive dissolution of Fe(III) and sequestration of Pb on secondary Fe minerals. Sequential extraction by the Bureau Community of Reference (BCR) provided more evidence that reducible fraction and residual fraction were major contributor of gastric Pb bioaccessibility, as well as reduced fractions in intestinal Pb bioaccessibility. In addition, higher non-carcinogenic risks may occur based on target hazard quotient (THQ ≥ 1). For people exposed to Pb present in soil, the management of vitamin C supplements is of serious concern.


Subject(s)
Soil Pollutants , Ascorbic Acid , Biological Availability , Dietary Supplements , Ferric Compounds , Humans , Lead/toxicity , Soil , Soil Pollutants/analysis
11.
Environ Int ; 165: 107314, 2022 07.
Article in English | MEDLINE | ID: mdl-35635965

ABSTRACT

There is growing evidence that human gut microbiota can metabolize arsenic (As); however, which bacteria play roles in this metabolism is unclear. In this study, we measured the abilities of 21 human gut bacteria strains from diverse clades to adsorb and transform As using in vitro method with the aim of determining which bacteria play a role in As metabolism. Seven strains showed high biosorption of As, ranging from 20.1 to 29.8%, which was attributed to functional groups on the bacterial surfaces, such as hydroxyl, amino, and carboxyl groups. Moreover, six of these seven strains were versatile, as they also had roles in reducing As(V) to As(III), which is mainly regulated by the arsC gene. Escherichia coli had the strongest tolerance to As and the highest reducing ability, with a value of 71.04-73.13 µM As/h. This study reveals that gut bacteria play essential roles in As biosorption and biotransformation, and provides a better understanding of which strains are involved, which has implications for the regulation of As toxicity-based gut bacteria and provides basic data for regulating arsenic to human health.


Subject(s)
Arsenic , Gastrointestinal Microbiome , Arsenic/metabolism , Arsenic/toxicity , Bacteria/genetics , Bacteria/metabolism , Biotransformation , Humans
12.
J Hazard Mater ; 433: 128778, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35358812

ABSTRACT

The oxidation of aqueous arsenite (As(III)) by As(III)-oxidizing bacteria is known to attenuate the mobilization and toxicity of arsenic, and is regarded as potential method for As(III)-pollution remediation. However, during the interactions between As(III)-oxidizing bacteria and different As(III)-adsorbed soil Fe-minerals, the oxidation and partitioning of solid-phase As(III), as well as the controlling mechanisms, remain unclear. In this study, we therefore incubated three As(III)-adsorbed Fe-minerals with a typical As(III)-oxidizing bacteria (Pseudomonas sp. HN-1) at different pH conditions. After microbial oxidation, the percentage of arsenate (As(V)) was significantly higher at pH 7 (15-94%) and 9 (12-89%) than at pH 4 (6-50%) in all Fe-minerals. Incubation of As(III)-oxidizing bacteria promoted As-immobilization under acidic-conditions but As-mobilization under alkaline-conditions. Arsenic-X-ray adsorption spectroscopy results showed that solid-phase As(V) fraction in goethite, hematite and magnetite was 27-64%, 5-12% and 50-91%, respectively. Compared with the corner-sharing As(III)-adsorption complexes formed on magnetite, the edge-sharing complexes on hematite were significantly more stable towards microbial-oxidation. Additionally, the strong adhesion between strain HN-1 and hematite probably limit bacterial-activity and mobility, thereby inhibiting microbial As(III)-oxidation. Our findings elucidate the controlling mechanisms of microbial As(III)-oxidation in different As(III)-adsorbed Fe-minerals and demonstrate strain HN-1 is an excellent candidate for As(III)-remediation in soils containing goethite and magnetite.


Subject(s)
Arsenic , Iron , Arsenic/metabolism , Arsenites , Bacteria/metabolism , Ferric Compounds/chemistry , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Iron/metabolism , Minerals/chemistry , Oxidation-Reduction , Pseudomonas/metabolism , Soil/chemistry
13.
Sci Total Environ ; 818: 151804, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34808186

ABSTRACT

Arsenic (As) transformation by human gut microbiota has been evidenced to impact As toxicity and human health. However, little is known about the influence of gut microbiota on As bioavailability from incidental ingestion of soil. In this study, we assessed As relative bioavailability (RBA) using an in vivo mouse model and As bioaccessibility in the colon phase of in vitro assays. Strong in vivo-in vitro correlations (R2 = 0.70-0.92, P < 0.05) were observed between soil As RBA (10.2%-57.7%) and colon bioaccessibility (4.8%-49.0%) in 13 As-contaminated soils. Upon in vitro incubation of human colon microbiota, we found a high degree of As transformation and 65.9% of generated As(III) was observed in soil residues. For in vivo mouse assay, DMA(V) accounted for 79.0% of cumulative urinary As excretion. Except for As(V), dominant As species including As(III), DMA(V) and As sulfides were also detected in mouse feces. Gut bacteria (families Rikenellaceae and Marinifilaceae) could be significantly correlated with As intake and excretion in mice (P < 0.05). Our findings provide evidence that gut microbiota can affect transformation, bioavailability, and fate of the orally ingested soil As in human gastrointestinal tract.


Subject(s)
Arsenic , Gastrointestinal Microbiome , Soil Pollutants , Animals , Arsenic/analysis , Biological Availability , Colon , Mice , Soil/chemistry , Soil Pollutants/analysis
14.
J Hazard Mater ; 426: 128072, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954432

ABSTRACT

Trivalent metals-modified-biochar (BC) has been widely used for the removal of fluorine (F) in water, but little is known about its effects on the stability and mobility of F-contaminated soil. Two types of modified-BC materials (BC-loaded iron-lanthanide (BC/Fe-La) and BC-loaded aluminum-lanthanide (BC/Al-La)) were synthesized and used for the remediation of F-contaminated soil. The forms of BC/LaxFe3x(OH)y in BC/Fe-La and BC/LaxAl3x(OH)y in BC/Al-La were identified by spectroscopy, X-ray dispersion, thermogravimetric, and pore diameter/volume analyses. Following application (4-12%, w/w) to F-contaminated soil for 30 d, water soluble fluoride (WSF) decreased significantly. The modified-BC with a 1:1:1 molar ratio (BC: Al3+ or Fe3+: La3+) were more effective than those at 1:0.5:0.5. The BC/Al-La were the most effective to stabilize F. In particular, the highest decrease in WSF (by 91.75%) was obtained with the application of 12% BC/Al-La-2, while 8% BC/Al-La-2% and 12% BC/Al-La-1 reduced the WSF by 87.58% and 90.17%, respectively; all values obtained were lower than the national standard of China (< 1.5 mg/L). In addition, the sequential extraction results showed that modified-BC promoted the transformation of the other chemical speciation to the Fe/Mn-F.


Subject(s)
Lanthanoid Series Elements , Soil Pollutants , Aluminum , Charcoal , Fluorides , Fluorine , Iron/analysis , Soil , Soil Pollutants/analysis
15.
J Hazard Mater ; 416: 125899, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492837

ABSTRACT

Incidental oral ingestion is considered to be an important exposure route for humans to soil contaminants, such as fluoride (F). For 25 soil samples containing 4000 mg F/kg from aluminium smelting site in southwestern China, this study investigated F bioaccessibility in the human gastrointestinal tract in vitro. Fluoride bioaccessibility (2.4-48.8%) in the gastric phase was primarily caused by the dissolution of F-Ca and F-Al compounds (assigned to residual phase), identified by X-ray photoelectron spectroscopy and sequential extraction. Following modification to the small intestinal phase, the variation in F bioaccessibility (2.5-38.8%) should be the result of concurrent processes, including the formation of F complexes and competitive adsorption, and inversely the precipitation of fluorite and surface adsorption of formed F-Al complexes. The colon incubation with human gut microbiota yielded a 1.3-fold increase in F bioaccessibility (3.9-45.7%), probably due to the dissolution of F bound to Fe (hydr)oxides. Bioaccessibility adjustment can reduce hazard quotient of fluoride, and non-carcinogenic risk for children should be noted that soil F intake contributed 21.7% on average, up to 76.6% of oral reference dose. This will result in better understanding of human health risk assessment associated with F exposures.


Subject(s)
Aluminum , Soil Pollutants , Aluminum/metabolism , Aluminum/toxicity , Biological Availability , Child , Fluorides/toxicity , Gastrointestinal Tract/metabolism , Humans , Risk Assessment , Soil , Soil Pollutants/metabolism
16.
Environ Pollut ; 280: 116958, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33774548

ABSTRACT

Seafood is an important source of arsenic (As) exposure for humans. In this study, 34 seafood samples (fishes, shellfishes, and seaweeds) collected from different markets in China were analysed for total and speciated As before and after boiling. Furthermore, the As bioaccessibility was also assessed using a physiologically based extraction test combined with the Simulator of Human Intestinal Microbial Ecosystems. The results showed that the total As (tAs) contents of seaweeds (raw: 44.12; boiled: 31.13, µg·g-1 dw) were higher than those of shellfishes (raw: 8.34; boiled: 5.14, µg·g-1 dw) and fishes (raw: 6.01; boiled: 3.25, µg·g-1 dw). Boiling significantly decreased the As content by 22.24% for seaweeds, 32.27% for shellfishes, and 41.42% in fishes, respectively (p < 0.05). During in vitro digestion, the bioaccessibility of tAs and arsenobetaine (AsB) significantly varied between the investigated species of seafood samples in gastric (G) and small intestinal phases (I) (p < 0.05). Higher tAs bioaccessibility (G: 68.6%, I: 81.9%) were obtained in fishes than shellfishes (G: 40.9%, I: 52.5%) and seaweeds (G: 31%, I: 53.6%). However, there was no significant differences in colonic phase (C) (p > 0.05). With the effect of gut microbiota, arsenate (AsⅤ) was transformed into monomethylarsonic acid (MMA) and arsenite (AsⅢ) in C. Moreover, as for seaweeds, an unknown As compound was produced.


Subject(s)
Arsenic , Gastrointestinal Microbiome , Animals , Arsenic/analysis , China , Ecosystem , Humans , Seafood/analysis
17.
Environ Pollut ; 279: 116943, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33770653

ABSTRACT

To identify the role of gut microbiota in human health risk assessment, the bioaccessibility of heavy metals in 14 soil samples were determined in simulated gastrointestinal fluids. Compared to the small intestinal phase, the bioaccessibility values of the colon phase varied, either increased by 3.5-fold for As, by 2.2-fold for Cr, and by 1.6-fold for Ni, or reduced by 4.4-fold for Cu, respectively. The colon incubation with adult gut microbiota yielded higher bioaccessibility value of As (1.3 times) and Fe (3.4 times) than that of the child in most soil samples. Colon bioaccessibility was about 60% greater of Cd for the adult and 30% higher of Cr for the child. Congruent data on the bioaccessibility of Cu and Ni was observed. In addition, correlation analysis indicated that in vitro bioaccessibility was primarily related to total concentrations of heavy metals in soils, followed by soil pH and active Fe/Mn oxide. Significantly, risk assessment calculated based on colon bioaccessibility indicated that the target hazard quotient (THQ > 1) of As was presented in 3 soil samples for the adult (1.05-3.35) and in 9 soil samples for the child (1.06-26.93). The hazard index (HI) of the child was 4.00 on average, greater than that of the adult (0.62), primarily due to the contribution of As and Cd. It suggested non-carcinogenic risks are likely to occur in children through typical hand-to-mouth behavior. The adjustment of colon bioaccessibility will result in more accurate risk assessment of human exposure to heavy metals from oral ingestion of contaminated soils.


Subject(s)
Gastrointestinal Microbiome , Metals, Heavy , Soil Pollutants , Adult , Child , China , Eating , Environmental Monitoring , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Risk Assessment , Soil , Soil Pollutants/analysis
18.
Food Chem ; 346: 128969, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33422920

ABSTRACT

Rice, a staple food for half the world's population, easily accumulates arsenic (As). Research on As distribution in rice protein and starch and its relationship with rice As bioaccessibility remains limited. This study investigated As distribution, chemical composition, As bioaccessibility and speciation in rice by continuous extraction and in vitro digestion. Of the total As, 87.5-94.5% was in rice protein and 5.0-9.8% in rice starch. The As amount in different protein fractions decreased as follows: glutelin > globulin > albumin > prolamin. As(V), As(III) and DMA in rice were more bioaccessible in the small intestinal phase than the gastric phase, and almost all As(V) dissolved in the small intestinal phase. Bioaccessible As in gastrointestinal digestive solution and As mass in protein fractions (albumin, globulin, and glutelin) were significantly positively correlated (p < 0.05). These results illuminate the bioaccessibility of As to humans consuming As-contaminated rice and avoid overassessment.


Subject(s)
Arsenic/analysis , Oryza/chemistry , Albumins/chemistry , Arsenic/chemistry , Chromatography, High Pressure Liquid , Cooking , Digestion , Globulins/chemistry , Glutens/chemistry , Humans , Mass Spectrometry , Microwaves , Oryza/metabolism , Prolamins/chemistry
19.
J Nanosci Nanotechnol ; 21(1): 10-21, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33213610

ABSTRACT

Soil arsenic (As) contamination is an important environmental problem, and chemical stabilization is one of the major techniques used to remediate soil As contamination. Iron and iron nanoparticle materials are widely used for soil As stabilization because they have one or more of the following advantages: high adsorption capacity, high reduction capacity, cost effectiveness and environmental friendliness. Therefore, this review introduces the stabilization of soil As with iron and iron nanoparticles, including zero-valent iron, iron oxides/hydroxides, some iron salts and Fe-based binary oxides and the nanoparticles of these iron materials. The mechanism of chemical soil As stabilization, which involves adsorption and the coprecipitation process, is discussed. The factors affecting the chemical stabilization process are presented, and challenges to overcome in the future are also discussed in this review.

20.
J Hazard Mater ; 401: 123366, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32659581

ABSTRACT

Soil arsenic (As) fractionation and its bioaccessibility are two important factors in human health risk assessment. However, data related to the impact of As minerals on the bioaccessibility with human gut microbiota involvement are scarce. In this study, speciation analysis was determined using HPLC-ICP-MS and XANES after incubation with colon microbiota from human origin, in combination with sequential extraction. Significant increase of colon As bioaccessibility was contributed primarily from As associated with amorphous and crystalline Fe/Al (hydr)oxides. We found a high degree of transformation at higher bioaccessibility (ave. 40 % of total As), which was predominantly present as liquid-phase As. In contrast, As transformation occurred mainly in the solid phase at lower bioaccessibility (< 5%), especially for soils containing As-S species. XANES spectroscopy revealed that As(III) increased by about 20 % in soil residues. Finally, the excreted As may be predominantly in association with (alumino)silicate minerals by SEM-EDX. It inferred that the priority sequence in As transformation by human gut microbiota was dissolved As(V), As(V) sorbed to mineral surfaces, crystalline As(V)-bearing minerals and As sulfides. This study will shed new light on the role of As-bearing minerals in evaluating health risks from soil As exposure.


Subject(s)
Arsenic , Gastrointestinal Microbiome , Soil Pollutants , Arsenic/analysis , Humans , Soil , Soil Pollutants/analysis , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...