Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 39(11): 2091-6, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25272849

ABSTRACT

OBJECTIVE: To observe the effect of Tongsaimai (TSM) tablets in treating foot trauma of diabetic foot (DF) model rats, and discuss its potential mechanism. METHOD: Male SD rats were selected to duplicate the diabetic foot ulcer model and randomly divided into the blank control group, the model group, the metformin treatment group, and TSM 12.44, 6.22, 3.11 g x kg(-1) groups (n = 10). The healing of ulcer wounds were observed on day 1, 4, 8, 13 and 18. After 18 days, a histopathologic examination was conducted for ulcer tissues. The contents of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by hydroxylamine and TBA methods. The content of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were determined with the radioimmunoassay. The immunohistochemical method was used to observe the expression of vascular endothelial growth factor (VEGF) in ulcer tissues and the number of capillary vessels. RESULT: TSM could alleviate the pathological changes of diabetic foot rats, accelerate the ulcer healing on 4, 8, 13, 18 d, reduce MDA, IL-6, TNF-alpha, VEGF content in rat serum at 18 d (after the rehabilitation period), and enhance the SOD content. Specifically, the TSM 12.44 g x kg(-1) group showed significant differences compared with the model group (P < 0.05, P < 0.01). At 18 d after the treatment (the late rehabilitation period), the VEGF expression of TSM 12.44, 6.22 g x kg(-1) groups and the number of blood capillaries of the TSM 12.44 g x kg(-1) group were significantly lower than that of the model group (P < 0.05, P < 0.01). CONCLUSION: TSM could promote the foot wound healing of DF model rats, reduce MDA, IL-6 and TNF-alpha levels in serum, increase the SOD content and decrease the VEGF expression and the number of blood capillaries in the late rehabilitation period. Its action mechanism may be related to the inhibition of oxidative stress injury and the inflammatory cell infiltration.


Subject(s)
Diabetic Foot/drug therapy , Drugs, Chinese Herbal/administration & dosage , Animals , Diabetic Foot/genetics , Diabetic Foot/metabolism , Diabetic Foot/physiopathology , Disease Models, Animal , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Malondialdehyde/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tablets/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/drug effects
2.
Acta Pharmacol Sin ; 35(10): 1257-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25220638

ABSTRACT

AIM: Liguzinediol is a novel derivative of ligustrazine isolated from the traditional Chinese medicine Chuanxiong (Ligusticum wallichii Franch), and produces significant positive inotropic effect in isolated rat hearts. In this study we investigated the effects of liguzinediol on a rat model of heart failure. METHODS: To induce heart failure, male SD rats were injected with doxorubicin (DOX, 2 mg/kg, ip) once a week for 4 weeks. Then the rats were administered with liguzinediol (5, 10, 20 mg·kg(-1)·d(-1), po) for 2 weeks. Hemodynamic examination was conducted to evaluate heart function. Myocardial cell apoptosis was examined morphologically. The expression of related genes and proteins were analyzed using immunohistochemical staining and Western blot assays, respectively. RESULTS: Oral administration of liguzinediol dose-dependently improved the heart function in DOX-treated rats. Electron microscopy revealed that liguzinediol (10 mg·kg(-1)·d(-1)) markedly attenuated DOX-induced injury of cardiomyocytes, and decreased the number of apoptotic bodies in cardiomyocytes. Furthermore, liguzinediol significantly decreased Bax protein level, and increased Bcl-2 protein level in cardiomyocytes of DOX-treated rats, led to an increase in the ratio of Bcl-2/Bax. Moreover, liguzinediol significantly decreased the expression of both cleaved caspase-3 and NF-κB in cardiomyocytes of DOX-treated rats. Administration of digitalis (0.0225 mg·kg(-1)·d(-1)) also markedly improved the heart function and the morphology of cardiomyocytes in DOX-treated rats. CONCLUSION: Liguzinediol improves the heart function and inhibits myocardial cell apoptosis in the rat model of heart failure, which is associated with regulating Bcl-2, Bax, caspase-3 and NF-κB expression.


Subject(s)
Apoptosis/drug effects , Doxorubicin/pharmacology , Heart Failure/drug therapy , Heart/drug effects , Myocytes, Cardiac/drug effects , Pyrazines/pharmacology , Animals , Caspase 3/metabolism , Gene Expression/drug effects , Heart Failure/metabolism , Male , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...