Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Front Pharmacol ; 14: 1190127, 2023.
Article in English | MEDLINE | ID: mdl-37274109

ABSTRACT

Trans-δ-viniferin (TVN), as a natural extract, is a resveratrol dimer with attractive biological activities, particularly its anti-tumor character. However, the mechanism of TVN interfering with cancerous proliferation has not been fully understood. Herein in this study, we found that TVN could trigger cancerous mitochondrial membrane potential (ΔΨm) reduction, with intracellular reactive oxidative species (ROS) level increasing, leading to apoptosis, which makes TVN a promising candidate for lung cancer cells A549 treatment. Therefore, this study provides TVN as an option to meet the demand for higher antitumor availability with lower biotoxicity and other clinical applications.

2.
Front Bioeng Biotechnol ; 9: 653800, 2021.
Article in English | MEDLINE | ID: mdl-34095096

ABSTRACT

Secondary metabolites of traditional Chinese herbs can prominently stimulate the production of laccase from white rot fungi during submerged fermentation. However, the molecular mechanism through which these natural products induce the production of laccase remains unknown. In this study, the Chinese herbal medicine Polygonum cuspidatum was used to induce laccase production in Trametes versicolor, and the best inducer was identified in emodin, even under conditions of 1000-L, large-scale fermentation. Proteomics analysis identified a selection of proteins that were differentially expressed in the presence of emodin, indicating that emodin may affect the expression of laccase genes through three mechanisms: reducing bioenergy productivity, the aryl hydrocarbon receptor (AHR)/xenobiotic response element (XRE) pathway, and the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Combined with protoplast flow cytometry and fluorescence, it is revealed that emodin might reduce the synthesis of ATP by lowering the mitochondrial membrane potential, leading to the subsequent responses.

3.
Front Chem ; 8: 583176, 2020.
Article in English | MEDLINE | ID: mdl-33335884

ABSTRACT

The presence of the phenol gossypol has severely limited the utilization of cottonseed meal and oil in the food and animal feed industries. Highly efficient means of biodegradation of gossypol and an understanding of the cytotoxicity of its degradation products remain outside current knowledge and are of universal interest. In this work, we showed for the first time that laccase can catalyze the intramolecular annulation of the aldehyde and hydroxyl groups of gossypol for the o-semiquinone radical and originate the released ·OH radical. It was further found that the oxidation of aldehyde groups significantly decreases reproductive toxicity and hepatotoxicity. These results indicate a novel detoxification pathway for gossypol and reveal the crucial role played by radical species in cyclization. This discovery could facilitate the development of safe, convenient, and low-cost industrial methods for the detoxification of cotton protein and oil resources.

4.
J Insect Sci ; 18(2)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29718488

ABSTRACT

Coptotermes suzhouensis (Isoptera: Rhinotermitidae) is a significant subterranean termite pest of wooden structures and is widely distributed in southeastern China. The complete mitochondrial DNA sequence of C. suzhouensis was analyzed in this study. The mitogenome was a circular molecule of 15,764 bp in length, which contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and an A+T-rich region with a gene arrangement typical of Isoptera mitogenomes. All PCGs were initiated by ATN codons and terminated by complete termination codons (TAA), except COX2, ND5, and Cytb, which ended with an incomplete termination codon T. All tRNAs displayed a typical clover-leaf structure, except for tRNASer(AGN), which did not contain the stem-loop structure in the DHU arm. The A+T content (69.23%) of the A+T-rich region (949 bp) was higher than that of the entire mitogenome (65.60%), and two different sets of repeat units (A+B) were distributed in this region. Comparison of complete mitogenome sequences with those of Coptotermes formosanus indicated that the two taxa have very high genetic similarity. Forty-one representative termite species were used to construct phylogenetic trees by maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses also strongly supported (BPP, MLBP, and MPBP = 100%) that all C. suzhouensis and C. formosanus samples gathered into one clade with genetic distances between 0.000 and 0.002. This study provides molecular evidence for a more robust phylogenetic position of C. suzhouensis and inferrs that C. suzhouensis was the synonymy of C. formosanus.


Subject(s)
Genome, Insect , Genome, Mitochondrial , Isoptera/genetics , Phylogeny , Animals , Sequence Homology, Nucleic Acid
5.
Appl Microbiol Biotechnol ; 100(17): 7471-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27020295

ABSTRACT

3-Phenyllactic acid (PLA) is an antimicrobial compound with broad-spectrum activity against bacteria and fungi that could be widely used in the food industry and livestock feeds. Notably, D-PLA exhibits higher antibacterial activity, which gains more attention than L-PLA. In this report, the D-lactate dehydrogenase DLDH744 from Sporolactobacillus inulinus CASD was engineered to increase the enzymatic activities toward phenylpyruvate by protein structure-guided modeling analysis. The phenylpyruvate molecule was first docked in the active center of DLDH744. The residues that might tightly pack around the benzene ring of phenylpyruvate were all selected for mutation. The single site mutant M307L showed the highest increased activity toward bulkier substrate phenylpyruvate than the wild type. By using the engineered D-lactate dehydrogenase M307L expressed in Escherichia coli strains, without coexpression of the cofactor regeneration system, 21.43 g/L D-PLA was produced from phenylpyruvate with a productivity of 1.58 g/L/h in the fed-batch biotransformation process, which ranked in the list as the highest production titer of D-PLA by D-lactate dehydrogenase. The enantiomeric excess value of produced D-PLA in the broth was higher than 99.7 %. Additionally, the structure-guided design of this enzyme will also provide referential information for further engineering other 2-hydroxyacid dehydrogenases, which are useful for a wide range of fine chemical synthesis.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacillales/enzymology , Biotransformation , Catalytic Domain/genetics , Lactate Dehydrogenases/metabolism , Lactates/chemical synthesis , Phenylpyruvic Acids/metabolism , Bacillales/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Lactate Dehydrogenases/genetics , Mutation , Stereoisomerism
6.
Appl Environ Microbiol ; 79(23): 7150-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24038694

ABSTRACT

Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.


Subject(s)
Locomotion , Medicago sativa/microbiology , Plant Root Nodulation , Polysaccharides, Bacterial/metabolism , Sinorhizobium meliloti/physiology , Symbiosis , Transcription Factors/metabolism , Gene Knockout Techniques , Sinorhizobium meliloti/genetics , Transcription Factors/genetics
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 24(6): 1411-5, 2007 Dec.
Article in Chinese | MEDLINE | ID: mdl-18232505

ABSTRACT

Since epidemiologic studies have reported a modestly increased risk of oncogenesis associated with certain electromagnetic fields (EMF), popular media and scientists have raised concerns about possible health hazards of environmental exposure to EMF. Laboratory-based experiments have shown that a variety of biological responses were induced by EMF, although these results were controversial and conflicting. The non-thermal effects of low energy EMF,the possible interaction of EMF with biological system have become focus topics in the biolectromagnetic fields. This paper focuses on recent studies of static and extremely low frequency electromagnetic fields, especially the interactive mechanism between EMF and cellular membrane and protein kinase signal transduction pathways. The potential genetic toxicity and risk evaluation are also discussed. However, the existence of some positive findings and the limitations in the set of studies suggest a need for more work.


Subject(s)
DNA Damage/radiation effects , Electromagnetic Fields/adverse effects , Environmental Exposure , Neoplasms, Radiation-Induced/etiology , Gene Expression Regulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...