Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 129: 155575, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636179

ABSTRACT

BACKGROUND: The prevalence and incidence of type 2 diabetes mellitus (T2DM) have dramatically increased. The intestinal flora and its derived metabolites are demonstrated to play vital roles in the etiology and onset of T2DM. Shouhuitongbian (SHTB) is a traditional Chinese formula to treat constipation. SHTB is composed of seven herbs and components of Colla corii asini (CCA) that are obtained from the hide of Equus asinus L.. Some of herbs in SHTB such as Aloe vera (L.) Burm.f., Cassia obtusifolia L., fruits of Lycium barbarum L., and Citrus aurantium L. have shown to improve insulin resistance (IR) and T2DM in early reports. We hypothesized that SHTB composed of these herbs has antidiabetic effects. The antidiabetic efficacy and mechanism of action of SHTB have not been previously reported. HYPOTHESIS/PURPOSE: To demonstrate the antidiabetic effect and elucidate the underlying mechanisms of SHTB from the perspective of gut microbiota. STUDY DESIGN: The main compounds were identified and quantified by high-performance liquid chromatography (HPLC)-mass spectrometry analysis. High fat diet (HFD)-fed mice and db/db mice were used to assess the antidiabetic effects and the mechanism of SHTB. The underlying mechanisms were evaluated by enzyme-linked immunosorbent assay (ELISA), western blot analysis, quantitative real time polymerase chain reaction (qPCR) analysis, 16S rRNA high-throughput sequencing, and targeted metabolome analysis. METHODS: HFD-fed mice and db/db mice were orally treated with the standard positive drug metformin (100 mg/kg/d) and with SHTB (200 and 100 mg/kg/d), which was chemically characterized according to the European Medicine Agency (EMA) guidelines. The beneficial effects of SHTB were studied by homeostasis model assessment of insulin resistance (HOMA-IR) index, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), total cholesterol (T-CHO), triglyceride (TG), and inflammation. Subsequently, 16S rDNA-based high-throughput pyrosequencing and GC-MS-based targeted metabolomics profiling were performed to analyze the gut microbiota composition and metabolites profile in the gut, respectively. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) / insulin receptor substrate 1 (IRS-1) / phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) pathway was evaluated via qPCR and western blot. RESULTS: Chemically characterized SHTB, in which six markers were quantified, effectively alleviated glucose intolerance and IR, ameliorated lipid metabolism dysfunction, and reduced inflammation. In addition, 16S rDNA sequencing found that SHTB reshaped the composition of intestinal flora, as indicated by the enrichment of Akkermansia and Parabacteroides in both HFD-fed and db/db mice. Moreover, SHTB enhanced the intestinal production of short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BSCFAs), and reduced the levels of the fecal and circulating branched-chain amino acids (BCAAs). The IRS-1/PI3K/AKT signaling pathway was upregulated after treatment with SHTB. CONCLUSION: Orally administration of SHTB effectively improved IR and reduced hyperglycemia in mice. Treatment with SHTB regulated the gut BCAAs-mTORC1/IRS-1/PI3K/AKT axis by enhancing the BCAAs catabolism in the gut, which attenuated the deleterious effect of BCAAs on the IRS-1 signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, High-Fat , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Hypoglycemic Agents , Insulin Resistance , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Hypoglycemic Agents/pharmacology , Male , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Mice , Mice, Inbred C57BL , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , East Asian People
2.
WIREs Mech Dis ; 15(5): e1611, 2023.
Article in English | MEDLINE | ID: mdl-37157158

ABSTRACT

Fungi, being a necessary component of the gut microbiome, potentially have direct or indirect effects on the health and illness status of the host. The gut mycobiome is an inducer of the host's immunity, maintaining intestinal homeostasis, and protecting against infections, as well as a reservoir of opportunistic microorganisms and a potential cofactor when the host is immunocompromised. In addition, gut fungi interact with a diverse range of microbes in the intestinal niches. In this article, we reviewed the composition of gut mycobiome, their association with host health and illness, and summarized the specific Candida albicans-host interactions, in order to provide insights and directions for the ongoing study of fungi. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Gastrointestinal Microbiome/physiology , Mycobiome/physiology , Candida albicans
3.
Protein Cell ; 14(10): 776-785, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37013853

ABSTRACT

Interactions between gut microbiome and host immune system are fundamental to maintaining the intestinal mucosal barrier and homeostasis. At the host-gut microbiome interface, cell wall-derived molecules from gut commensal bacteria have been reported to play a pivotal role in training and remodeling host immune responses. In this article, we review gut bacterial cell wall-derived molecules with characterized chemical structures, including peptidoglycan and lipid-related molecules that impact host health and disease processes via regulating innate and adaptive immunity. Also, we aim to discuss the structures, immune responses, and underlying mechanisms of these immunogenic molecules. Based on current advances, we propose cell wall-derived components as important sources of medicinal agents for the treatment of infection and immune diseases.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Bacteria , Immune System , Symbiosis , Immunity, Mucosal , Immunity, Innate
4.
J Agric Food Chem ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786753

ABSTRACT

The potentially beneficial effects of probiotics in the treatment of obesity have been generally demonstrated. In the present study, a new strain of Lactobacillus reuteri SY523 (L. reuteri SY523) with an anti-obesity effect was isolated from the fecal microbiota of diet-induced obese mice. Untargeted metabolomics analysis of mice serum showed that the significantly differential metabolite indole-3-carboxaldehyde (3-IAId) was markedly elevated in the L. reuteri SY523-treated group, and interestingly, the abundance of 3-IAId was significantly negatively associated with obesity-related indicators. As expected, in the HepG2 cell induced by free fatty acids, the potential activity of 3-IAId in restraining lipid deposition was verified. Further, we found that 3-IAId was involved in the anti-obesity effect of L. reuteri SY523 mainly via regulating the cGMP/cAMP signaling pathway. The highlight of this study lies in clarifying the pivotal role of metabolite 3-IAId in the anti-obesity effect induced by L. reuteri SY523, which is conducive to the development of probiotics for anti-obesity agents.

5.
J Agric Food Chem ; 71(3): 1628-1642, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36638159

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a serious health problem worldwide. Impeding fatty acid uptake may be an attractive therapeutic strategy for NAFLD. In the current study, we found that millet bran protein hydrolysate (MBPH) prepared by in vitro gastrointestinal bionic digestion exhibits the potential of anti-NAFLD in vitro and in vivo, characterized by the alleviation of hepatic steatosis and the reduction of lipid accumulation. Further, MBPH significantly decreased the expression levels of fatty acid uptake related genes (FABP1, FABP2, FABP4, CD36, and CPT-1α) of liver tissue in a NAFLD mice model through activating peroxisome proliferator-activated receptor γ (PPARγ) and efficiently restrained the fatty acid uptake of liver tissue, thus exerting anti-NAFLD activity. As expected, the anti-NAFLD effect induced by MBPH, characterized by the alleviation of hepatic vacuolar degeneration, hepatic steatosis, and fibrosis, was effectively abrogated with PPARγ inhibitor (GW9662) treatment. These results indicate that the retardant of fatty acid uptake induced by PPARγ activation may be the critical factor for the anti-NAFLD effect of MBPH. Collectively, MBPH has the potential as a next-generation dietary supplementation for the prevention and treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR gamma , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Millets/metabolism , Protein Hydrolysates/metabolism , Fatty Acids/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Mice, Inbred C57BL , Diet, High-Fat
6.
Acta Pharm Sin B ; 12(3): 1254-1270, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35530132

ABSTRACT

Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.

7.
J Agric Food Chem ; 70(2): 507-519, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34989223

ABSTRACT

Foxtail millet proteins and their hydrolysates have the potential to prevent atherosclerosis (AS). In our present study, a novel Bowman-Birk type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) with an anti-AS effect was obtained by in vitro gastrointestinal bionic digestion. Further, the anti-AS activity of FMB-BBTI was verified by the classic apoE-/- mice model, characterized by the decreases of the inflammatory cytokines (TNF-α and IL-1ß) and atherosclerotic plaque. Importantly, FMB-BBTI remodeled the structure of gut microbiota in apoE-/- mice, including the increase of Firmicutes at the phylum level, and the abundance alteration of five genera at the genus level, especially significant enrichment of Lactobacillus. Collectively, FMB-BBTI markedly restrains the AS progress, suggesting that the remodeling of gut microbiota induced by FMB-BBTI may be the critical factor for its anti-AS activity. This study indicates that FMB-BBTI may serve as a vital functional component contributing to the anti-AS potential of foxtail millet bran.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Setaria Plant , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Mice , Trypsin Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...