Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(4): e0333023, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38470483

ABSTRACT

The root-associated microbiota has a close relation to the life activities of plants, and its composition is affected by the rhizospheric environment and plant genotypes. Rice (Oryza sativa) was domesticated from the ancestor species Oryza rufipogon. Many important agricultural traits and adversity resistance of rice have changed during a long time of natural domestication and artificial selection. However, the influence of rice genotypes on root microbiota in important agricultural traits remains to be explained. In this study, we performed 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing to generate bacterial and fungal community profiles of O. rufipogon and O. sativa, both of which were planted in a farm in Guangzhou and had reached the reproductive stage. We compared their root microbiota in detail by alpha diversity, beta diversity, different species, core microbiota, and correlation analyses. We found that the relative abundance of bacteria was significantly higher in the cultivated rice than in the common wild rice, while the relative abundance of fungi was the opposite. Significant differences in agricultural traits between O. rufipogon and O. sativa showed a high correlation with core microorganisms in the two Oryza species, which only existed in either or had obviously different abundance in both two species, indicating that rice genotype/phenotype had a strong influence on recruiting specific microorganisms. Our study provides a theoretical basis for the in-depth understanding of rice root microbiota and the improvement of rice breeding from the perspective of the interaction between root microorganisms and plants.IMPORTANCEPlant root microorganisms play a vital role not only in plant growth and development but also in responding the biotic and abiotic stresses. Oryza sativa is domesticated from Oryza rufipogon which has many excellent agricultural traits especially containing resistance to biotic and abiotic stresses. To improve the yield and resistance of cultivated rice, it is particularly important to deeply research on differences between O. sativa and O. rufipogon and find beneficial microorganisms to remodel the root microbiome of O. sativa.


Subject(s)
Microbiota , Oryza , Oryza/microbiology , Domestication , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Agriculture
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123699, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043297

ABSTRACT

The Raman microspectroscopy technology has been successfully applied to evaluate the molecular composition of living cells for identifying cell types and states, but the rationale behind it was not well investigated. In this study, we acquired single-cell Raman spectra (SCRS) of three Klebsiella pneumoniae (K. pneumoniae) strains with different Carbapenem resistant mechanisms and analyzed them with machine learning algorithm. Two carbapenem resistant Klebsiella pneumoniae (CRKP) strains can be successfully distinguished from susceptible strain and CRKP with KPC or IMP carbapenemases can be classified with an overall accuracy achieving 100 %. Furthermore, we performed a correlation analysis between transcriptome and Raman spectra, and found that Raman shifts such as 752 and 1039 cm-1 highly correlated with drug resistance genes expression and could be regarded as Raman biomarkers for CRKP with different mechanisms. The findings of the study provide a theoretical basis for identifying the relationship between Raman spectra and transcriptome of bacteria, as well as a novel method for rapid identification of CRKP and their carbapenemases types.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Transcriptome , Klebsiella Infections/microbiology , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Gene Expression Profiling , Microbial Sensitivity Tests
3.
Biochem Genet ; 58(1): 1-15, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31098827

ABSTRACT

The complete genome sequence of Bacillus velezensis type strain CMT-6 is presented for the first time. A comparative analysis between the genome sequences of CMT-6 with the genome of Bacillus amyloliquefaciens DSM7T, B. velezensis FZB42, and Bacillus subtilis 168 revealed major differences in the lipopeptide synthesis genes. Of the above, only the CMT-6 strain possessed an integrated synthetase gene for synthesizing surfactin, iturin, and fengycin. However, CMT-6 shared 14, 12, and 10 other lipopeptide-producing genes with FZB42, DSM7T, and 168 respectively. The largest numbers of non-synonymous mutations were detected in 205 gene sequences that produced these three lipopeptides in CMT-6 and 168. Comparing CMT-6 with DSM7T, 58 non-synonymous mutations were detected in gene sequences that contributed to produce lipopeptides. In addition, InDels were identified in yczE and glnR genes. CMT-6 and FZB42 had the lowest number of non-synonymous mutations with 8 lipopeptide-related gene sequences. And InDels were identified in only yczE. The numbers of core genes, InDels, and non-synonymous mutations in genes were the main reasons for the differences in yield and variety of lipopeptides. These results will enrich the genomic resources available for B. velezensis and provide fundamental information to construct strains that can produce specific lipopeptides.


Subject(s)
Bacillus/genetics , Bacterial Proteins/genetics , Genome, Bacterial/genetics , Lipopeptides/genetics , Genetic Variation , Peptide Synthases/genetics , Whole Genome Sequencing
4.
Front Oncol ; 9: 371, 2019.
Article in English | MEDLINE | ID: mdl-31139565

ABSTRACT

Head and neck cancer (HNC) is the sixth most common cancer worldwide. Over the last decade, an enormous amount of well-annotated gene and drug data has accumulated for HNC. However, a comprehensive repository is not yet available. Here, we constructed the Head and Neck Cancer Database (HNCDB: http://hncdb.cancerbio.info) using text mining followed by manual curation of the literature to collect reliable information on the HNC-related genes and drugs. The high-throughput gene expression data for HNC were also integrated into HNCDB. HNCDB includes the following three separate but closely related components: "HNC GENE," "Connectivity Map," and "ANALYSIS." The "HNC GENE" component contains comprehensive information for the 1,173 HNC-related genes manually curated from 2,564 publications. The "Connectivity Map" includes information on the potential connections between the 176 drugs manually curated from 2,032 publications and the 1,173 HNC-related genes. The "ANALYSIS" component allows users to conduct correlation, differential expression, and survival analyses in the 2,403 samples from 78 HNC gene expression datasets. Taken together, we believe that HNCDB will be of significant benefit for the HNC community and promote further advances for precision medicine research on HNC.

5.
BMC Genomics ; 19(1): 889, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30526490

ABSTRACT

BACKGROUND: Pectobacterium spp. are necrotrophic bacterial plant pathogens of the family Pectobacteriaceae, responsible for a wide spectrum of diseases of important crops and ornamental plants including soft rot, blackleg, and stem wilt. P. carotovorum is a genetically heterogeneous species consisting of three valid subspecies, P. carotovorum subsp. brasiliense (Pcb), P. carotovorum subsp. carotovorum (Pcc), and P. carotovorum subsp. odoriferum (Pco). RESULTS: Thirty-two P. carotovorum strains had their whole genomes sequenced, including the first complete genome of Pco and another circular genome of Pcb, as well as the high-coverage genome sequences for 30 additional strains covering Pcc, Pcb, and Pco. In combination with 52 other publicly available genome sequences, the comparative genomics study of P. carotovorum and other four closely related species P. polaris, P. parmentieri, P. atrosepticum, and Candidatus P. maceratum was conducted focusing on CRISPR-Cas defense systems and pathogenicity determinants. Our analysis identified two CRISPR-Cas types (I-F and I-E) in Pectobacterium, as well as another I-C type in Dickeya that is not found in Pectobacterium. The core pathogenicity factors (e.g., plant cell wall-degrading enzymes) were highly conserved, whereas some factors (e.g., flagellin, siderophores, polysaccharides, protein secretion systems, and regulatory factors) were varied among these species and/or subspecies. Notably, a novel type of T6SS as well as the sorbitol metabolizing srl operon was identified to be specific to Pco in Pectobacterium. CONCLUSIONS: This study not only advances the available knowledge about the genetic differentiation of individual subspecies of P. carotovorum, but also delineates the general genetic features of P. carotovorum by comparison with its four closely related species, thereby substantially enriching the extent of information now available for functional genomic investigations about Pectobacterium.


Subject(s)
Genome, Bacterial , Genomics , Pectobacterium/genetics , Pectobacterium/pathogenicity , Bacterial Secretion Systems/genetics , CRISPR-Cas Systems/genetics , Conserved Sequence/genetics , Genes, Bacterial , Genetic Variation , Multigene Family , Operon/genetics , Pectobacterium/isolation & purification , Phenotype , Species Specificity
6.
Data Brief ; 21: 966-971, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30426053

ABSTRACT

Herein, an algicidal strain, Stenotrophomonas rhizophila GA1, was isolated from a marine dinoflagellate and its genome was sequenced using next-generation sequencing technology. The genome size of S. rhizophila GA1 was determined to be 5.92 Mb with a G+C content of 62.39%, comprising eight scaffolds of 67 contigs. A total of 4579 functional proteins were assigned according to COG categories. In silico genome annotation protocols identified multiple putative LuxI-like genes located in the upstream position at contig 4. The thin-layer chromatography analysis showed that three kinds of acyl homoserine lactone (AHL) signals could be produced by S. rhizophila GA1. This work describes an algicidal bacterium capable of generating AHL molecules for its ecological adaptation. The annotated genome sequence of this strain may represent a valuable tool for studying algae-bacterium interactions and developing microbial methods to control harmful algae. The genome scaffolds generated are available in the National Center Biotechnology Information (NCBI) BioProject with accession number PRJNA485554.

7.
PLoS One ; 13(10): e0203840, 2018.
Article in English | MEDLINE | ID: mdl-30278050

ABSTRACT

As an abundant post-translational modification, reversible phosphorylation is critical for the dynamic regulation of various biological processes. prkC, a critical serine/threonine-protein kinase in bacteria, plays important roles in regulation of signaling transduction. Identification of prkC-specific phosphorylation sites is fundamental for understanding the molecular mechanism of phosphorylation-mediated signaling. However, experimental identification of substrates for prkC is time-consuming and labor-intensive, and computational methods for kinase-specific phosphorylation prediction in bacteria have yet to be developed. In this study, we manually curated the experimentally identified substrates and phosphorylation sites of prkC from the published literature. The analyses of the sequence preferences showed that the substrate recognition pattern for prkC might be miscellaneous, and a complex strategy should be employed to predict potential prkC-specific phosphorylation sites. To develop the predictor, the amino acid location feature extraction method and the support vector machine algorithm were employed, and the methods achieved promising performance. Through 10-fold cross validation, the predictor reached a sensitivity of 91.67% at the specificity of 95.12%. Then, we developed freely accessible software, which is provided at http://free.cancerbio.info/prkc/. Based on the predictor, hundreds of potential prkC-specific phosphorylation sites were annotated based on the known bacterial phosphorylation sites. prkC-PSP was the first predictor for prkC-specific phosphorylation sites, and its prediction performance was promising. We anticipated that these analyses and the predictor could be helpful for further studies of prkC-mediated phosphorylation.


Subject(s)
Bacillus subtilis/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Algorithms , Bacillus subtilis/chemistry , Binding Sites , Computational Biology/methods , Data Curation , Phosphorylation , Substrate Specificity , Support Vector Machine
8.
Sci Rep ; 7(1): 13991, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070806

ABSTRACT

Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.


Subject(s)
Cell Differentiation , Inflammation/genetics , Osteogenesis , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , RNA, Long Noncoding/genetics , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Gene Expression Regulation , Humans , Inflammation/chemically induced , Inflammation/pathology , Tumor Necrosis Factor-alpha/pharmacology
9.
BMC Genomics ; 15: 479, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24935762

ABSTRACT

BACKGROUND: Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a variety of R. anatipestifer strains has proved severely limiting. RESULTS: In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp, Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845. CONCLUSION: The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families. Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.


Subject(s)
Genome, Bacterial , Riemerella/genetics , Base Composition , Chromosome Mapping , Codon , INDEL Mutation , Multigene Family , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Genome Announc ; 2(1)2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24407625

ABSTRACT

In order to explore the effect of space environments on Bacillus cereus, we determined the draft genome sequence of a B. cereus strain, LCT-BC235, which was isolated after space flight.

SELECTION OF CITATIONS
SEARCH DETAIL
...