Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(8): 13428-13435, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157481

ABSTRACT

Photoalignment of liquid crystal polarization grating based on optical imprinting is a promising technique for polarization grating mass production. However, when the period of the optical imprinting grating is in the sub-micrometer level, the zero-order energy from the master grating will become high, and it will strongly affect the photoalignment quality. This paper proposes a double-twisted polarization grating structure to eliminate the zero-order disturbance of master grating and gives the design method. Based on the designed results, a master grating was prepared, and the optically imprinted photoalignment of polarization grating with a period of 0.5µm was fabricated. This method has the advantages of high efficiency and significantly greater environmental tolerance than the traditional polarization holographic photoalignment methods. It has the potential to be used for large-area polarization holographic gratings production.

2.
Opt Lett ; 47(13): 3195-3198, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776583

ABSTRACT

In this Letter, a contact polarization holographic photoalignment method is proposed. In the holographic recording, a phase mask is contacted with a photoalignment film, making light carrying wavefront information interfere with reference light in the near-field region to realize polarization holographic pattern recording with a sub-micrometer feature size. The relevant theoretical derivation is given, and holographic recording of a 0.4 µm feature-size phase mask is realized. The proposed method can conveniently realize liquid-crystal binary diffractive optical elements with a sub-micrometer feature size. Off-axis diffraction can also be realized by superimposing the grating information by changing the angle between the substrate and the interference light.

3.
Opt Express ; 30(5): 8234-8247, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299569

ABSTRACT

Multi-focus image fusion algorithm integrates complementary information from multiple source images to obtain an all-in-focus image. Most published methods will create incorrect points in their decision map which have to be refined and polished with post-processing procedure. Aim to address these problems, we present, for the first time, a novel algorithm based on random features embedding (RFE) and ensemble learning which reduced the calculation workload and improved the accuracy without post-processing. We utilize RFE to approximate a kernel function so that Support Vector Machine (SVM) can be applied to large scale data set. With ensemble learning scheme we then eliminate the abnormal points in the decision map. We reduce the risk of entrap into over-fitting predicament and boost the generalization ability by combining RFE and ensemble learning. The theoretical analysis is in consistence with the experimental results. With low computation cost, the proposed algorithm achieve high visual quality as the state-of-the-art(SOTA).

4.
Opt Express ; 30(2): 2646-2658, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209400

ABSTRACT

In this paper, a dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model is proposed for the design of phase holograms to suppress speckle noise of the reconstructed images. By introducing a Fresnel transmission layer, based on angular spectrum diffraction theory, as the diffraction propagation model and incorporating it into U-Net as the output layer, the proposed neural network model can describe the actual physical process of holographic imaging, and the distributions of both the light amplitude and phase can be generated. Afterwards, by respectively using the Pearson correlation coefficient (PCC) as the loss function to modulate the distribution of the amplitude, and a proposed target-weighted standard deviation (TWSD) as the loss function to limit the randomness and arbitrariness of the reconstructed phase distribution, the dual tasks of the amplitude reconstruction and phase smoothing are jointly solved, and thus the phase hologram that can produce high quality image without speckle is obtained. Both simulations and optical experiments are carried out to confirm the feasibility and effectiveness of the proposed method. Furthermore, the depth of field (DOF) of the image using the proposed method is much larger than that of using the traditional Gerchberg-Saxton (GS) algorithm due to the smoothness of the reconstructed phase distribution, which is also verified in the experiments. This study provides a new phase hologram design approach and shows the potential of neural networks in the field of the holographic imaging and more.

5.
Opt Express ; 29(6): 8523-8530, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820298

ABSTRACT

Holographic speckle screens with the Gaussian type distribution of scattered light, which are used to increase the viewing angle of the image in projection display systems, result in nonuniform image brightness in different observing positions. In this study, based on Helmholtz-Kirchhoff theory, a dual-beam scattering theory of rough surface is derived. By analyzing the spatial frequency spectrum of the scattered light, it is found that when two laser beams irradiated the ground glass at a certain angle, the resulting speckles recorded on the photoresist can generate a flat-top angular distribution of the scattered light. Speckle screens are fabricated by two light beams at different angles, and the angular intensity distribution of scattered light is measured. The results are in good agreement with the theory. Compared with the Gaussian type diffuser, the energy efficiency of the speckle screen proposed has a 46% increase when the angular luminance uniformity is set to be 80%, which effectively improves the brightness when used in a head up display system.

6.
Opt Express ; 29(4): 6236-6247, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726149

ABSTRACT

In this paper, a modification method based on a U-Net convolutional neural network is proposed for the precise fabrication of three-dimensional microstructures using laser direct writing lithography (LDWL). In order to build the correspondence between the exposure intensity distribution data imported to the laser direct writing system and the surface profile data of the actual fabricated microstructure, these two kinds of data are used as training tensors of the U-Net convolutional neural network, which is proved to be capable of generating their accurate mapping relations. By employing such mapping relations to modify the initial designed exposure intensity data of the parabolic and saddle concave micro-lens with an aperture of 24µm×24µm, it is demonstrated that their fabrication precision, characterized by the mean squared error (MSE) and the peak signal-to-noise ratio (PSNR) between the fabricated and the designed microstructure, can be improved significantly. Specifically, the MSE of the parabolic and saddle concave micro-lens decreased from 100 to 17 and 151 to 50, respectively, and the PSNR increased from 22dB to 29dB and 20dB to 25dB, respectively. Furthermore, the effect of laser beam shaping using these two kinds of micro-lens has also been improved considerably. This study provides a new solution for the fabrication of high-precision three-dimensional microstructures by LDWL.

7.
Inorg Chem ; 58(16): 10736-10742, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31390188

ABSTRACT

A new Cu4I4-cluster-based compound is constructed to show multifaceted photoluminescent attributes: (1) ultraviolet (UV)-excited thermo-, mechano-, and rigido-chromic phosphorescence by the OPA (one-photon absorption) pathway, due to the interchanging emissions from cluster-centered (3CC) and halide-to-ligand charge-transfer (3XLCT) excited triplet states, (2) the ability to convert X/γ-ray and near-infrared (NIR) radiation to visible-light emission, in which the heavy Cu4I4 cores serve as the efficient X/γ-PEA (photoelectric absorption) or NIR-TPA (two-photon absorption) trapper and convertor to photons in the visible spectrum from the same emissive triplet states as those produced by UV excitation. This all-in-one compound affords a highly integrated nanolab for understanding and exploiting a wide range of photophysical phenomena simultaneously and is further fabricated into fiber-coupled long-range, in situ cryogenic thermometer and poly(methyl methacrylate) (PMMA)-embedded monolith gel, providing access to advanced applications in multifunctional optical materials and devices.

8.
Angew Chem Int Ed Engl ; 58(40): 14379-14385, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31355964

ABSTRACT

In multiphoton excited fluorescence (MPEF), high-energy upconversion emission is obtained from low-energy excitation by absorbance of two or more photons simultaneously. In a pressure-induced fluorochromic process, the emission energy is switched by outer pressure stimuli. Now, five metal-organic frameworks containing the same ligand with simultaneous multiphoton absorption and pressure-induced fluorochromic attributes were studied. One-, two-, and three-photon excited fluorescence (1/2/3PEF) can be achieved in the frameworks, which exhibit pressure-induced blue-to-yellow fluorochromism. The performances are closely dependent with the topologies, flexibilities, and packing states of the frameworks and chromophores therein. The multiphoton upconversion performance can be intensified by pressure-related structural contraction. Over ten-fold increment in the 2PA active cross-section up to 2217 GM is achieved in pressed LIFM-114 compared with the 210 GM for pristine sample at 780 nm.

9.
Angew Chem Int Ed Engl ; 58(29): 9752-9757, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31144372

ABSTRACT

The design of white-light phosphors is attractive in solid-state lighting (SSL) and related fields. A new strategy in obtaining white light emission (WLE) from dual-way photon energy conversion in a series of dye@MOF (LIFM-WZ-6) systems is presented. Besides the traditional UV-excited one-photon absorption (OPA) pathway, white-light modulation can also be gained from the combination of NIR-excited green and red emissions of MOF backbone and encapsulated dyes via two-photon absorption (TPA) pathway. As a result, down-conversion OPA white light was obtained for RhB+ @LIFM-WZ-6 (0.1 wt %), BR-2+ @LIFM-WZ-6 (2 wt %), and APFG+ @LIFM-WZ-6 (0.1 wt %) samples under 365 nm excitation. RhB+ @LIFM-WZ-6 (0.05 wt %), BR-2+ @LIFM-WZ-6 (1 wt %) and APFG+ @LIFM-WZ-6 (0.05 wt %) exhibit up-conversion TPA white light under the excitation of 800, 790, and 730 nm, respectively. This new WLE generation strategy combines different photon energy conversion mechanisms together.

10.
Angew Chem Int Ed Engl ; 58(11): 3481-3485, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30615238

ABSTRACT

Long persistent luminescence (LPL) materials have a unique photophysical mechanism to store light radiation energy for subsequent release. However, in comparison to the common UV source, white-light (WL) and near-infrared (NIR) excited LPL is scarce. Herein we report a metal-organic supramolecular box based on a D-π-A-type ligand. Owing to the integrated one-photon absorption (OPA) and two-photon absorption (TPA) attributes of the ligand, the heavy-atom effect of the metal center, as well as π-stacking and J-aggregation states in the supramolecular assembly, LPL can be triggered by all wavebands from the UV to the NIR region. This novel designed supramolecular kit to afford LPL by both OPA and TPA pathways provides potential applications in anti-counterfeiting, camouflaging, decorating, and displaying, among others.

11.
J Nanosci Nanotechnol ; 19(4): 2253-2259, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30486978

ABSTRACT

Ultrasensitive detection of molecules by graphene plasmons based surface enhanced infrared absorption spectroscopy (SEIRAS) has attracted considerable research interest in recent years. However, SEIRAS still suffers from low enhancement. Herein, we investigated the crucial factors that determined the enhancement of graphene plasmons based SEIRAS. Through numerical calculations, it found that the enhancement of SEIRAS can be significantly improved by increasing the absorptance of graphene plasmons and the electron relaxation time of graphene. It revealed that such results were related to the mode energy of graphene plasmons. High absorptance and long electron relaxation time would result in high mode energy, which would in turn induce large local electric field to enhance the SEIRAS signal. Moreover, it showed that the resonant center of a molecular vibrational mode can be accurately extracted from the Rabi splitting spectra obtained by sweeping the Fermi energy of graphene. Our study could provide a guidance to improve the enhancement of graphene plasmons based SEIRAS for ultrasensitive molecular detection.

12.
Chem Rev ; 118(18): 8889-8935, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30130099

ABSTRACT

Metal-organic complexes assembled from coordinative interactions are known to be able to display a wide range of photoluminescent behaviors benefiting from an extensive number of metal ions, organic linkers, and inclusion guests, depending on the multifaceted nature of their chemical structures and photophysical properties. In the past two decades, the white-light-emitting (WLE) and photoluminescent color-tuning (PLCT) materials based on the single-phase metal-organic coordination assemblies have merited particular attention and gained substantial advances. In this review, we give an overview of recent progress in this field, placing emphasis on the WLE and PLCT properties realized in the single-phase materials, which covers the origin, generation, and manipulation of different types of photoluminescence (PL) derived from ligand-centered (LC), metal/cluster-centered (MC or CC), excimer/exciplex-based (EX), metal-to-ligand or ligand-to-metal charge-transfer-based (MLCT or LMCT), or guest-included emissions. The coordination assemblies in this topic can be generally classified into three categories [(1) mono/homometallic coordination assemblies based on main group (s,p-block), transition (d-block), or lanthanide (f-block) metal centers, (2) s/p-f-, d-f-, or f-f-type heterometallic coordination assemblies, and (3) guest-included coordination assemblies] for which WLE and PLCT properties can be achieved by virtue of either a wide-band/overlapped emission covering the whole visible spectrum from a single emitting center or a combination of complementary color emissions from multiple emitting centers/origins. Some state-of-the-art assembly methods and successful design models relevant to the above three categories are elaborated to demonstrate how to achieve efficient and controllable white-light emission in a single-phase material through a tunable PL approach. Potential applications in the fields of lighting and displaying, sensing and detecting, and barcoding and patterning are surveyed, and at the end, possible prospects and challenges for future development along this line are proposed.

13.
Inorg Chem ; 57(18): 11436-11442, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30152695

ABSTRACT

A Co-MOF, [Co3(HL)2·4DMF·4H2O] was simply synthesized through a one-pot solvothermal method. With the semiconductor nature, its band gap was determined to be 2.95 eV by the Kubelka-Munk method. It is the first trinuclear Co-MOF employed for photocatalytic hydrogen evolution and CO2 reduction with cobalt-oxygen clusters as catalytic nodes. Hydrogen evolution experiments indicated the activity was related to the photosensitizer, TEOA, solvents, and size of catalyst. After optimization, the best activity of H2 production was 1102 µmol/(g h) when catalyst was ground and then soaked in photosensitizer solution before photoreaction. To display the integrated design of Co-MOF, we used no additional photosensitizer and cocatalyst in the CO2 reduction system. When -NH2 was used for light absorption and a Co-O cluster was used as catalyst, Co-MOF exhibited an activity of 456.0 µmol/(g h). The photocatalytic mechanisms for hydrogen evolution and CO2 reduction were also proposed.

14.
Nat Commun ; 9(1): 2401, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921871

ABSTRACT

Two-dimensional (2D) metal-organic frameworks have exhibited a range of fascinating attributes, of interest to numerous fields. Here, a calcium-based metal-organic framework with a 2D layered structure has been designed. Dual emissions relating to intralayer excimers and interlayer trapped excitons are produced, showing excitation-dependent shifting tendency, characteristic of a low dimensional semiconductor nature. Furthermore, the layer stacking by weak van der Waals forces among dynamically coordinated DMF molecules enables exfoliation and morphology transformation, which can be achieved by ultrasound in different ratios of DMF/H2O solvents, or grinding under appropriate humidity conditions, leading to nano samples including ultrathin nanosheets with single or few coordination layers. The cutting down of layer numbers engenders suppression of interlayer exciton-related emission, resulting in modulation of the overall emitting color and optical memory states. This provides a rare prototypical model with switchable dual-channel emissions based on 2D-MOFs, in which the interlayer excitation channel can be reversibly tuned on/off by top-down exfoliation and morphology transformation.

15.
Chemistry ; 24(40): 10091-10098, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29786911

ABSTRACT

Two series of isostructural lanthanide coordination complexes, namely, LIFM-42(Ln) (Ln=Eu, Tb, Gd, in which LIFM stands for the Lehn Institute of Functional Materials) and LIFM-43(Ln) (Ln=Er, Yb), were synthesized through the self-assembly of an excited-state intramolecular proton transfer (ESIPT) ligand, 5-[2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl]isophthalic acid (H2 hpi2cf), with different lanthanide ions. In the coordination structures linked by the ligands and oxo-bridged LnIII 2 clusters (for LIFM-42(Ln) series) or isolated LnIII ions (for LIFM-43(Ln) series), the ESIPT ligand can serve as both the host and antenna for protecting and sensitizing the photoluminescence (PL) of LnIII ions. Meanwhile, the -OH⋅⋅⋅N active sites on the ligands are vacant, which provides availability to systematically explore the PL behavior of Ln complexes with ESIPT interference. Based on the accepting levels of different lanthanide ions, energy transfer can occur from the T1 (K*) or T1 (E*) (K*=excited keto form, E*=excited enol form) excited states of the ligand. Furthermore, the sensitized lanthanide luminescence in both visible and near-infrared regions, as well as the remaining K* emission of the ligand, can be modulated by the ESIPT responsiveness to different solvents, anions, and temperature.

16.
Nanotechnology ; 29(13): 135201, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29345625

ABSTRACT

All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

17.
Angew Chem Int Ed Engl ; 56(46): 14582-14586, 2017 11 13.
Article in English | MEDLINE | ID: mdl-28948681

ABSTRACT

Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices.

18.
Nat Commun ; 8: 15985, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28665406

ABSTRACT

A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

19.
Chimia (Aarau) ; 69(11): 670-4, 2015.
Article in English | MEDLINE | ID: mdl-26671051

ABSTRACT

A tetradentate symmetric ligand bearing both coordination and hydrogen bonding sites, N(1),N(3)-bis(1-(1H-benzimidazol-2-yl)-ethylidene)propane-1,3-diamine (H2bbepd) was utilized to synthesize a series of transition metal complexes, namely [Co(H2bbepd)(H(2)O)2]·2ClO(4) (1), [Cu(H2bbepd)(OTs(-))]·OTs(-) (2),[Cu(bbepd)(CH(3)OH)] (3), [Cd(H(2)bbepd)(NO3)2]·CH(3)OH (4), [Cd(H(2)bbepd)(CH(3)OH)Cl]·Cl (5), and [Cd(bbepd)(CH(3)OH)2] (6). These complexes show similar discrete pincer-like coordination units, possessing different arrangements of hydrogen bonding donor and acceptor sites. With or without the aid of uncoordinated anions and solvent molecules, such mononuclear units have been effectively involved in the construction of hierarchical hydrogen bonding assemblies (successively via level I and level II), leading to discrete binuclear ring (complex 2), one-dimensional chain or ribbon (complexes 3, 4 and 6) and two-dimensional layer (complexes 1 and 5) aggregates.


Subject(s)
Hydrogen Bonding , Cadmium/chemistry , Copper/chemistry , Crystallography, X-Ray
20.
Chem Commun (Camb) ; 51(63): 12533-6, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26152399

ABSTRACT

Direct white-light emission and further a dual-channel readable barcode module in both visible and NIR region was established by single-component homo-metallic Pr(iii)-MOF crystals for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...