Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Korean J Physiol Pharmacol ; 28(1): 59-72, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38154965

ABSTRACT

To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

2.
Mol Med Rep ; 17(4): 5463-5469, 2018 04.
Article in English | MEDLINE | ID: mdl-29393464

ABSTRACT

Pyroptosis is triggered by inflammasomes after its activation by various inflammatory stimulations, including lipopolysaccharide (LPS) and improper pH. This may result in programmed death of the affected cell. It is well known that NLRP1 and NLRP3 inflammasomes mediate the production of various cytokines in inflammatory disorders; however, it is still unknown whether NLRP1 and NLRP3 inflammasomes can influence the LPS­induced pyroptosis in the progression of knee osteoarthritis (KOA). In the present study, the correlation between the NLRP inflammasomes and fibroblast­like synoviocytes (FLSs) pyroptosis was investigated in vivo and in vitro. Human synovial samples were collected from KOA patients and the expression of NLRP1 and NLRP3 inflammasomes was analyzed. Human FLS were isolated in vitro and stimulated with LPS. To determine whether NLRP1 and NLRP3 inflammasomes are involved in FLS pyroptosis, NLRP1 and NLRP3 small interfering RNAs (siRNAs) were used. The results showed that the expression of NLRPs and inflammasome­related proteins were upregulated and FLS stimulated with LPS+ATP resulted in cell pyroptosis. However, LPS+ATP­induced pyroptosis was attenuated by NLRP1 and NLRP3 siRNAs. The results of the present study indicate that LPS­induced FLS pyroptosis may be mediated by either NLRP1 or NLRP3 inflammsomes. Overall, based on the data obtained from patients and in vitro cells, the present finsings showed that NLRP1 and NLRP3 inflammasomes are highly involved in the FLS inflammation and pyroptosis. Furthermore, inhibition of NLRP1 and NLRP3 led to a remarkable reduction of pyroptosis­related cytokines. Thus, NLRP1 and NLRP3 inflammasomes may be important in the pathogenesis of OA and may represent a novel therapeutic target.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphate/metabolism , Apoptosis Regulatory Proteins/metabolism , Inflammasomes/metabolism , Lipopolysaccharides/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/metabolism , Pyroptosis , Adaptor Proteins, Signal Transducing/genetics , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Flow Cytometry , Gene Expression , Humans , Immunohistochemistry , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Osteoarthritis, Knee/pathology , RNA, Small Interfering/genetics , Synovial Fluid/metabolism
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-789612

ABSTRACT

@#BACKGROUND: The plasma concentration of paraquat is closely related to the prognosis of patients with paraquat toxication, and the most common cause of death from paraquat poisoning is multiple organ failure (MOF). This study aimed to evaluate therapeutic effect of smecta on the plasma concentrations of paraquat and multi-organ injury induced by paraquat intoxication in rats. METHODS: A total of 76 healthy adult SD rats were randomly divided into group A (control group, n=6), group B (poisoned group, n=30) and group C (smecta-treated group, n=30). Rats in groups B and C were treated intragastrically with PQ at 50 mg/kg, and rats in group A was treated intragastrically with saline (1 mL). Rats in group C were given intragastrically smecta at 400 mg/kg 10 minutes after administration of PQ, while rats in other two groups were treated intragastrically with 1 mL saline at the same time. Live rats in groups B and C were sacrificed at 2, 6, 24, 48, 72 hours after administration of PQ for the determination of paraquat plasma concentrations and for HE staining of the lung, stomach and jejunum. The rats were executed at the end of trial by the same way in group A. RESULTS: The plasma concentration of paraquat (ng/mL) ranged from 440.314±49.776 to 4320.6150±413.947. Distinctive pathological changes were seen in the lung, stomach and jejunum in group B. Lung injuries deteriorated gradually, edema, leukocyte infiltration, pneumorrhagia, incrassated septa and lung consolidation were observed. Abruption of mucosa, hyperemic gastric mucosa and leukocyte infiltration were obvious in the stomach. The hemorrhage of jejunum mucosa, the abruption of villus, the gland damage with the addition of inflammatory cell infiltration were found. Compared to group B, the plasma concentration of paraquat reduced (P<0.01) and the pathological changes mentioned above were obviously alleviated in group C (P<0.05, P<0.01). CONCLUSION: Smecta reduced the plasma concentration of paraquat and alleviated pathologic injury of rats with PQ poisoning.

SELECTION OF CITATIONS
SEARCH DETAIL
...