Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931925

ABSTRACT

Pancreatic cancer (PC) is characterized by its notably poor prognosis and high mortality rate, underscoring the critical need for advancements in its diagnosis and therapy. Gold nanoparticles (AuNPs), with their distinctive physicochemical characteristics, demonstrate significant application potential in cancer therapy. For example, upon exposure to lasers of certain wavelengths, they facilitate localized heating, rendering them extremely effective in photothermal therapy. Additionally, their extensive surface area enables the conjugation of therapeutic agents or targeting molecules, increasing the accuracy of drug delivery systems. Moreover, AuNPs can serve as radiosensitizers, enhancing the efficacy of radiotherapy by boosting the radiation absorption in tumor cells. Here, we systematically reviewed the application and future directions of AuNPs in the diagnosis and treatment of PC. Although AuNPs have advantages in improving diagnostic and therapeutic efficacy, as well as minimizing damage to normal tissues, concerns about their potential toxicity and safety need to be comprehensively evaluated.

2.
Toxics ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668508

ABSTRACT

Lead and cadmium are foodborne contaminants that threaten human and animal health. It is well known that lead and cadmium produce hepatotoxicity; however, defense mechanisms against the co-toxic effects of lead and cadmium remain unknown. We investigated the mechanism of autophagy (defense mechanism) against the co-induced toxicity of lead and cadmium in rat hepatocytes (BRL-3A cells). Cultured rat liver BRL-3A cell lines were co-cultured with 10, 20, 40 µM lead and 2.5, 5, 10 µM cadmium alone and in co-culture for 12 h and exposed to 5 mM 3-Methyladenine (3-MA), 10 µM rapamycin (Rapa), and 50 nM Beclin1 siRNA to induce cellular autophagy. Our results show that treatment of BRL-3A cells with lead and cadmium significantly decreased the cell viability, increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential levels, and induced apoptosis, which are factors leading to liver injury, and cell damage was exacerbated by co-exposure to lead-cadmium. In addition, the results showed that lead and cadmium co-treatment induced autophagy. We further observed that the suppression of autophagy with 3-MA or Beclin1 siRNA promoted lead-cadmium-induced apoptosis, whereas enhancement of autophagy with Rapa suppressed lead-cadmium-induced apoptosis. These results demonstrated that co-treatment with lead and cadmium induces apoptosis in BRL-3A cells. Interestingly, the activation of autophagy provides cells with a self-protective mechanism against induced apoptosis. This study provides insights into the role of autophagy in lead-cadmium-induced apoptosis, which may be beneficial for the treatment of lead-cadmium-induced liver injury.

3.
Front Cell Infect Microbiol ; 13: 1299977, 2023.
Article in English | MEDLINE | ID: mdl-38156313

ABSTRACT

Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, accounting for the second most common cause of gastrointestinal tumors. As one of the intestinal barriers, gut bacteria form biofilm, participate in intestinal work, and form the living environment of intestinal cells. Metagenomic next-generation sequencing (mNGS) of the gut bacteria in a large number of CRC patients has been established, enabling specific microbial signatures to be associated with colorectal adenomato-carcinoma. Gut bacteria are involved in both benign precursor lesions (polyps), in situ growth and metastasis of CRC. Therefore, the term tumorigenic bacteria was proposed in 2018, such as Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, etc. Meanwhile, bacteria toxins (such as cytolethal distending toxin (CDT), Colibactin (Clb), B. fragilis toxin) affect the tumor microenvironment and promote cancer occurrence and tumor immune escape. It is important to note that there are differences in the bacteria of different types of CRC. In this paper, the role of tumorigenic bacteria in the polyp-cancer transformation and the effects of their secreted toxins on the tumor microenvironment will be discussed, thereby further exploring new ideas for the prevention and treatment of CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Colorectal Neoplasms/etiology , Bacteria/genetics , Carcinogenesis , Decision Making , Tumor Microenvironment
4.
ACS Nano ; 17(15): 14619-14631, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37470391

ABSTRACT

Biosensors based on graphene field effect transistors (GFETs) have the potential to enable the development of point-of-care diagnostic tools for early stage disease detection. However, issues with reproducibility and manufacturing yields of graphene sensors, but also with Debye screening and unwanted detection of nonspecific species, have prevented the wider clinical use of graphene technology. Here, we demonstrate that our wafer-scalable GFETs array platform enables meaningful clinical results. As a case study of high clinical relevance, we demonstrate an accurate and robust portable GFET array biosensor platform for the detection of pancreatic ductal adenocarcinoma (PDAC) in patients' plasma through specific exosomes (GPC-1 expression) within 45 min. In order to facilitate reproducible detection in blood plasma, we optimized the analytical performance of GFET biosensors via the application of an internal control channel and the development of an optimized test protocol. Based on samples from 18 PDAC patients and 8 healthy controls, the GFET biosensor arrays could accurately discriminate between the two groups while being able to detect early cancer stages including stages 1 and 2. Furthermore, we confirmed the higher expression of GPC-1 and found that the concentration in PDAC plasma was on average more than 1 order of magnitude higher than in healthy samples. We found that these characteristics of GPC-1 cancerous exosomes are responsible for an increase in the number of target exosomes on the surface of graphene, leading to an improved signal response of the GFET biosensors. This GFET biosensor platform holds great promise for the development of an accurate tool for the rapid diagnosis of pancreatic cancer.


Subject(s)
Biosensing Techniques , Carcinoma, Pancreatic Ductal , Exosomes , Graphite , Pancreatic Neoplasms , Humans , Reproducibility of Results , Transistors, Electronic , Pancreatic Neoplasms/diagnosis , Biosensing Techniques/methods , Carcinoma, Pancreatic Ductal/diagnosis , Pancreatic Neoplasms
5.
Front Nutr ; 9: 997773, 2022.
Article in English | MEDLINE | ID: mdl-36211490

ABSTRACT

Background: With the rapid improvement in economy and lifestyle, dietary risk-related diseases have become a public health problem worldwide. However, the health effects of dietary risk over time have not been fully clarified in China. Here, we explored the temporal trends in the death burden of unhealthy dietary habits in China and benchmark dietary risk challenges in China to G20 member states. Method: Sex-age-specific burdens due to dietary risk in China were extracted from the Global Burden of Disease (GBD) Study 2019, including annual numbers and age-standardized rates (ASRs) of death, disability-adjusted life years (DALYs), and summary exposure values (SEVs) during 1990-2019. The variation trend of ASRs was evaluated by estimated annual percentage changes (EAPCs). Result: Between 1990 and 2019, the number of dietary risk-based death and DALYs increased significantly in China with an overall downward trend of ASDR and ASR-DALYs. Ischemic heart disease was the first cause of death from diet, followed by stroke and colon and rectum cancers. Chinese men were at greater risk than women for diet-related death and DALYs. Further analysis showed that a high sodium diet has always been the "No. 1 killer" that threatens the health of Chinese residents. The death burden of dietary risk demonstrated an increasing trend with age, and the peak was reached in people over 75 years. Compared with other G20 countries, Japan and South Korea have the most similar dietary patterns to China with the character of high sodium intake. Notably, decreased whole grain intake, as the primary dietary risk attributable to death and DALYs burden in the United States and European countries, had already ranked second in China's dietary risks. Conclusion: China's dietary burden cannot be ignored. Chinese residents should pay more attention to the collocation of dietary nutrients, especially men and 75+ years (elderly) people. Targeted dietary adjustments can significantly reduce deaths and DALYs in China.

6.
Sens Diagn ; 1(4): 719-730, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35923775

ABSTRACT

Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation; relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications.

7.
Phys Chem Chem Phys ; 24(11): 6363-6382, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35253031

ABSTRACT

Selective catalytic reduction with NH3 (NH3-SCR) was the most efficient approach to mitigate the emission of nitrogen oxides (NOx). Although the conventional manganese oxide-based catalyst had gradually become a kind of principal catalyst for the low-temperature NH3-SCR reaction, there were still numerous defects. The growing demands for extensive operation temperature scope, strong SO2 tolerance, and excellent catalytic activity had boosted the development of novel manganese oxide-based catalysts. In this review, three forms of manganese oxide-based catalysts were introduced in detail, including single manganese oxide catalysts, composite manganese oxide-based catalysts, and supported manganese oxide-based catalysts. The surface acidity and redox properties of manganese oxide-based catalysts could be strengthened by optimizing the preparation methods, exposing specific crystal planes, and constructing multiple active centers and sacrificial sites, which improved the SCR performance and anti-poisoning properties of catalysts. Secondly, we briefly summarized the NH3-SCR reaction mechanism of manganese oxide-based catalysts, including the Eley-Rideal (E-R) mechanism and the Langmuir-Hinshelwood (L-H) mechanism. Finally, several overtures were proposed for the future research directions of manganese oxide-based catalysts for NH3-SCR reaction, hoping to narrow the gap between the novel manganese oxide-based catalysts and the actual demands and realize commercialized application in the nearest future.

8.
J Med Food ; 24(10): 1058-1067, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34668763

ABSTRACT

Fucoidan possesses various biological activities, such as anticoagulant, immunomodulatory, anti-inflammatory, potential antioxidant, and others. In this study, we investigated the effect of fucoidan on high-fat diet-induced obesity, inflammation, and gut microbiota in Institute of Cancer Research mice. Mice were gavaged with 50 mg/(kg·d) (Fuc0.5 group) or 250 mg/(kg·d) (Fuc2.5 group) of fucoidan for 5 weeks. Fucoidan alleviated obesity and tissue damage by decreasing body weight and body mass index, decreasing body weight gain, improved organ index, liver steatosis, and improved the structure of the small intestine. In addition, fucoidan decreased total cholesterol, triglyceride, and low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol. Moreover, fucoidan reduced serum lipopolysaccharide concentrations, tumor necrosis factor-α, and total bile acid. Furthermore, fucoidan improved the structure of gut microbiota and significantly increased the abundance (Shannon diversity index, evenness, and Faecalibacterium prausnitzii) determined by denaturing gradient gel electrophoresis and quantitative PCR. In conclusion, our study provides a scientific basis for fucoidan as a functional food for modulating the gut microbiota and protecting against obesity.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Polysaccharides
9.
ACS Appl Mater Interfaces ; 13(7): 7854-7864, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33560115

ABSTRACT

Graphene field-effect transistors (GFETs) are suitable building blocks for high-performance electrical biosensors, because graphene inherently exhibits a strong response to charged biomolecules on its surface. However, achieving ultralow limit-of-detection (LoD) is limited by sensor response time and screening effect. Herein, we demonstrate that the detection limit of GFET biosensors can be improved significantly by decorating the uncovered graphene sensor area with carbon dots (CDs). The developed CDs-GFET biosensors used for exosome detection exhibited higher sensitivity, faster response, and three orders of magnitude improvements in the LoD compared with nondecorated GFET biosensors. A LoD down to 100 particles/µL was achieved with CDs-GFET sensor for exosome detection with the capability for further improvements. The results were further supported by atomic force microscopy (AFM) and fluorescent microscopy measurements. The high-performance CDs-GFET biosensors will aid the development of an ultrahigh sensitivity biosensing platform based on graphene for rapid and early diagnosis of diseases.


Subject(s)
Biosensing Techniques , Carbon/chemistry , Exosomes/chemistry , Quantum Dots/chemistry , Transistors, Electronic , Particle Size , Surface Properties
10.
J Microbiol Biotechnol ; 31(2): 181-188, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33144552

ABSTRACT

Bacillus subtilis and Enterococcus faecium are commonly used probiotics. This study aimed to identify the effect of live combined Bacillus subtilis R0179 and Enterococcus faecium R0026 (LCBE) on obesityassociated hyperlipidemia and gut microbiota in C57BL/6 mice. Forty male C57BL/6 mice were divided into four groups: normal group (N group), model group (M group), low-dose group (L group), and high-dose group (H group). Mice were gavaged with LCBE at 0.023 g/mice/day (L group) or 0.23 g/mice/day (H group) and fed with a high-fat diet for 8 weeks. In vitro E. faecium R0026 showed an ability to lower the low-concentration of cholesterol by 46%, and the ability to lower the highconcentration of cholesterol by 58%. LCBE significantly reduced the body weight gain, Lee index, brown fat index and body mass index of mice on a high-fat diet. Moreover, LCBE markedly improved serum lipids (including serum triglyceride, total cholesterol, low-density lipoprotein and highdensity lipoprotein) while also significantly reducing liver total cholesterol. Serum lipopolysaccharide and total bile acid in L and H groups decreased significantly compared with M group. PCR-DGGE analysis showed that the composition of gut microbiota in the treatment groups was improved. Akkermansia muciniphila was found in H group. The PCA result indicated a similar gut microbiota structure between LCBE treatment groups and normal group while the number of bands and Shannon diversity index increased significantly in the LCBE treatment groups. Finally, qPCR showed Bifidobacterium spp. increased significantly in H group compared with M group, LCBE alleviated liver steatosis and improved brown adipose tissue index.


Subject(s)
Bacillus subtilis/physiology , Enterococcus faecium/physiology , Gastrointestinal Microbiome/drug effects , Hyperlipidemias/prevention & control , Obesity/complications , Probiotics/administration & dosage , Animals , Cholesterol/metabolism , Humans , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Hyperlipidemias/microbiology , Lipid Metabolism/drug effects , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...