Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 19(6): e2300570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864387

ABSTRACT

This article primarily introduces a new treatment for liver fibrosis/cirrhosis. We developed a hepatic patch by combining decellularized liver matrix (DLM) with the hepatocyte growth factor (HGF)/heparin-complex and evaluated its restorative efficacy. In vitro prophylactic results, the HGF/heparin-DLM patches effectively mitigated CCl4-induced hepatocyte toxicity and restored the cytotoxicity levels to the baseline levels by day 5. Furthermore, these patches restored albumin synthesis of injured hepatocytes to more than 70% of the normal levels within 5 days. In vitro therapeutic results, the urea synthesis of the injured hepatocytes reached 91% of the normal levels after 10 days of culture, indicating successful restoration of hepatic function by the HGF/heparin-DLM patches in both prophylactic and therapeutic models. In vivo results, HGF/heparin-DLM patches attached to the liver and gut exhibited a significant decrease in collagen content (4.44 times and 2.77 times, respectively) and an increase in glycogen content (1.19 times and 1.12 times, respectively) compared to the fibrosis group after 1 week, separately. In summary, liver function was restored and inflammation was inhibited through the combined effects of DLM and the HGF/heparin-complex in fibrotic liver. The newly designed hepatic patch holds promise for both in vitro and in vivo regeneration therapy and preventive health care for liver tissue engineering.


Subject(s)
Carbon Tetrachloride , Heparin , Hepatocyte Growth Factor , Hepatocytes , Liver , Animals , Carbon Tetrachloride/toxicity , Hepatocyte Growth Factor/metabolism , Heparin/chemistry , Hepatocytes/drug effects , Male , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Tissue Engineering/methods , Mice , Rats , Liver Cirrhosis/therapy , Chemical and Drug Induced Liver Injury/metabolism , Humans , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley
2.
Macromol Biosci ; 24(5): e2300411, 2024 May.
Article in English | MEDLINE | ID: mdl-38326219

ABSTRACT

Liver fibrosis occurs in many chronic liver diseases, while severe fibrosis can lead to liver failure. A chitosan-phenol based self-healing hydrogel (CP) integrated with decellularized liver matrix (DLM) is proposed in this study as a 3D gel matrix to carry hepatocytes for possible therapy of liver fibrosis. To mimic the physiological liver microenvironment, DLM is extracted from pigs and mixed with CP hydrogel to generate DLM-CP self-healing hydrogel. Hepatocyte spheroids coated with endothelial cells (ECs) are fabricated using a customized method and embedded in the hydrogel. Hepatocytes injured by exposure to CCl4-containing medium are used as the in vitro toxin-mediated liver fibrosis model, where the EC-covered hepatocyte spheroids embedded in the hydrogel are co-cultured with the injured hepatocytes. The urea synthesis of the injured hepatocytes reaches 91% of the normal level after 7 days of co-culture, indicating that the hepatic function of injured hepatocytes is rescued by the hybrid spheroid-laden DLM-CP hydrogel. Moreover, the relative lactate dehydrogenase activity of the injured hepatocytes is decreased 49% by the hybrid spheroid-laden DLM-CP hydrogel after 7 days of co-culture, suggesting reduced damage in the injured hepatocytes. The combination of hepatocyte/EC hybrid spheroids and DLM-CP hydrogel presents a promising therapeutic strategy for hepatic fibrosis.


Subject(s)
Coculture Techniques , Endothelial Cells , Hepatocytes , Hydrogels , Liver , Spheroids, Cellular , Hepatocytes/metabolism , Hepatocytes/cytology , Animals , Spheroids, Cellular/cytology , Hydrogels/chemistry , Hydrogels/pharmacology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Liver/injuries , Liver/pathology , Swine , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Extracellular Matrix/metabolism , Carbon Tetrachloride
SELECTION OF CITATIONS
SEARCH DETAIL
...