Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166887, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37683860

ABSTRACT

Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Silicon/analysis , Rhizosphere , Phosphorus/metabolism , Metals, Heavy/analysis , Soil , Oryza/metabolism , Plants/metabolism , Hydrogen-Ion Concentration , Soil Pollutants/analysis
2.
Materials (Basel) ; 16(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176472

ABSTRACT

As a municipal solid waste, waste glass undergoes pozzolanic activity when ground to a certain fineness. In this paper, calcium carbide residue (CCR) and Na2CO3 were used as composite alkali activators for a glass powder-based composite cementitious system. A total of 60% fly ash (FA) and 40% ground granulated blast furnace slag (GGBS) were used as the reference group of the composite cementitious material system, and the effects of 5%, 10%, 15%, and 20% glass powder (GP) replacing FA on the rheological behavior, mechanical properties, and microstructure of alkali-activated composite cementitious systems were investigated. The results showed that with the increase in GP replacing FA, the fluidity of the alkali-activated materials gradually decreased, the shear stress and the equivalent plastic viscosity both showed an increasing trend, and the paste gradually changed from shear thinning to shear thickening. Compared with the reference sample, the fluidity of the alkali-activated material paste with a 20% GP replacement of FA was reduced by 15.3%, the yield shear stress was increased by 49.6%, and the equivalent plastic viscosity was elevated by 32.1%. For the 28d alkali-activated material pastes, the compressive strength and flexural strength were increased by 13% and 20.3%, respectively. The microstructure analysis showed the substitution of FA by GP promoted the alkali-activated reaction to a certain extent, and more C-A-S-H gel was formed.

3.
Materials (Basel) ; 15(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744264

ABSTRACT

Despite their excellent performance, two-dimension nanomaterials have certain limitations in improving the performance of cement-based materials due to their poor dispersity in the alkaline environment. This paper has synthesized a new two-dimension stacked GO-SiO2 (GOS) hybrid through the sol-gel method. Nano-SiO2 is coated on the surface of GO with wrinkling characteristics, and the atomic ratio of C, O, and Si in GOS is 1:1.69:0.57. The paper discusses the impacts on the spreading, Marsh cone flow time, rheological properties, mechanical properties, and microstructure of cement-based materials for the GOS at different mixing quantities. Furthermore, with the same mixing quantity of 0.01%, the influences on the dispersity, flow properties, rheological parameters, and mechanical properties of GOS and graphene oxide (GO) are compared. Lastly, fuzzy matrix analysis has been adopted to analyze the comprehensive performance of cement-based materials containing GOS. The research results indicate that, compared with the reference sample, the spreading for the GOS cement mortar with 0.01% mixing quantity was reduced by 4.76%, the yield shear stress increased by 37.43%, and the equivalent plastic viscosity was elevated by 2.62%. In terms of the 28 d cement pastes, the compressive and flexural strength were boosted by 27.17% and 42.86%, respectively. According to the optical observation, GOS shows better dispersion stability in the saturated calcium hydroxide solution and simulated pore solution than GO. Compared with the cement-based materials with the same mixing quantity (0.01%), GOS has higher spreading, lower shear yield stress, and higher compressive and flexural strength than GO. Finally, according to the results of fuzzy matrix analysis, when the concentration of GOS is 0.01%, it presents a more excellent comprehensive performance with the highest score. Among the performance indicators, the most significant improvement was in the flexural properties of cement-based materials, which increased from 8.6 MPa to 12.3 MPa on the 28 d.

4.
Materials (Basel) ; 12(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261644

ABSTRACT

Glass flake (GF) was used as the reinforcement in chemically bonded phosphate ceramic (CBPC) coatings to promote anti-corrosion property. The crystalline phase, curing behavior, micromorphology and electrochemical performance of the coatings were studied. The results indicate that with the addition of magnesia (MgO), a new bonding phase (Mg3(PO4)2) can be formed, which can help the CBPCs achieve a more compact and denser structure. The effect of the magnesia and the GF additives on curing behavior is obvious: the heat of reaction of the phosphate ceramic materials increases with the addition of the magnesia and the GF, which emphasizes the higher crosslinking density in the phosphate ceramic materials. The phosphate ceramic coatings with the magnesia have a higher impedance value compared with the neat phosphate ceramic coating, while the highest impedance value is obtained with increased content of GF. The corrosion mechanism is mainly contributed by the new bonding phase and GF particles, which can hinder the permeation pathway and make the permeation more circuitous.

SELECTION OF CITATIONS
SEARCH DETAIL
...