Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 186: 114397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729739

ABSTRACT

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Subject(s)
Glucose , Lysine , Maillard Reaction , Odorants , Oxidation-Reduction , Sesame Oil , Sesame Oil/chemistry , Glucose/chemistry , Odorants/analysis , Lysine/chemistry , Phenols/chemistry , Benzodioxoles
2.
Food Chem X ; 21: 101203, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38384683

ABSTRACT

The study characterized the aroma-active compounds produced by sesame hulls at three roasting temperatures and analyzed the similarities and differences in the aroma profile of sesame hulls with whole seeds and kernels after roasting. Roasting hulls produced mainly furans, aldehydes, and ketones volatiles. 140 Compounds were identified as aroma-active compounds, including 36 key aroma compounds (odor activity value, OAV ≥ 1). Among them, furanone (caramel-like, OAV = 80), 3-methylbutanal (fruity, OAV = 124), and 2-methoxy-4-vinylphenol (burnt, smoky, OAV = 160) gave hulls (180 °C) sweet, burnt, and smoky aroma. Due to the contribution of vanillin (fatty, sweet milk, OAV = 45), 2-hydroxy-3-butanone (caramel-like, roast, OAV = 46), and 2-methoxy-4-vinylphenol (OAV = 78), hulls (200 °C) shown strong sweet and roast note. These results identified compounds that contributed significantly to the aroma of sesame hulls and elucidated the contribution of sesame hulls to the flavor of roasted whole seeds and sesame oil.

3.
Food Chem X ; 21: 101087, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38268846

ABSTRACT

This study developed a novel and green method to produce fragrant sesame oil using microwaves and subcritical extraction (SBE). Sesame seeds were microwaved at 540 W for 0-9 min before subcritical propane extraction at 40 °C and 0.5 MPa. SBE caused less deformation to the cellular microstructure of sesame cotyledons while dramatically improving oil yield (96.7-97.1 %) compared to screw processing (SP) (53.1-58.6 %). SBE improved extraction rates for γ-tocopherol (381.1-454.9 µg/g) and sesame lignans (917.9-970.4 mg/100 g) in sesame oil compared to SP (360.1-443.8 µg/g and 872.8-916.8 mg/100 g, respectively). Microwaves generated aroma-active heterocyclics and phenolics faster than hot-air roasting in sesame oil with a better sensory profile. SBE had a higher extraction rate for aroma-active terpenes, alcohols, and esters while reducing the concentrations of carcinogenic PAHs and HCAs in sesame oil. The novel combination process of microwaves and subcritical extraction is promising in producing fragrant sesame oil with superior qualities.

4.
Food Chem X ; 20: 101045, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144781

ABSTRACT

The unclear effects of microwaves, as a greener alternative to hot air, on sensory perception, aroma, and hazardous components of sesame oil were investigated. Microwaves (900 W, 6-10 min) created more seed porosity and cell destruction and facilitated more γ-tocopherol release in sesame oil (349.30-408.50 mg/kg) than 200 °C, 20 min hot air (304.90 mg/kg). Microwaves (6-10 min) generated more aromatic heterocyclics (42.40-125.12 mg/kg) and aldehydes (5.15-2.08 mg/kg) in sesame oil than hot air (25.59 mg/kg and 1.34 mg/kg). Microwaves (6 min) produced sesame oil with a stronger roasted sesame flavour, and weaker bitter and burnt flavour than hot air. Microwaves reduced harman (≤775.19 ng/g), norharman (≤1,069.99 ng/g), and benzo(a)pyrene (≤1.59 µg/kg) in sesame oil than hot air (1,319.85 ng/g, 1,168.40 ng/g, and 1.83 µg/kg). Appropriate microwave is a promising alternative to hot air in producing sesame oil with a better sensory profile, more bioactive, and less carcinogenic components.

5.
J Food Sci ; 87(2): 699-713, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35048369

ABSTRACT

This study investigated the changes in aroma composition and perception of sunflower oils induced by seed roasting using sensory-oriented flavor analysis. Volatile compounds were extracted by solvent-assisted flavor evaporation and headspace solid-phase microextraction. Odorants were characterized by gas chromatography-olfactometry-mass spectrometry and aroma extract dilution analysis. The cold-pressed and roasted sunflower oils contained 13 and 50 odorants, respectively, with the flavor dilution factors between 1 and 256. Fifty-six odorants were newly identified in sunflower oils. Quantification of 26 important odorants by the external standard method revealed apparent changes induced by seed roasting in loss of terpenes, formation of Maillard reaction products, and the increase in lipid oxidation products. The most important odorants (odor active values, OAVs = 1-1857) in the cold-pressed sunflower oil included α-pinene (11,145 µg/kg), ß-pinene (4068 µg/kg), linalool (56 µg/kg), hexanal (541 µg/kg), octanal (125 µg/kg), α-phellandrene (36 µg/kg), and (E)-2-octenal (69 µg/kg), contributing to the raw sunflower seed, woody, green, earthy, and sweet aromas of the oil. The most important contributors (OAVs = 1-884) to the roasted, smoky, and burnt aromas of the roasted sunflower oil were 2- and 3-methylbutanal (6726 and 714 µg/kg), 2,6-dimethylpyrazine (2329 µg/kg), 2,5-dimethylpyrazine (12,228 µg/kg), 2,3-dimethylpyrazine (238 µg/kg), 2,3-pentanedione (1456 µg/kg), 2-pentylfuran (1332 µg/kg), 2,3-dimethyl-5-ethylpyrazine (213 µg/kg), and 1-pentanol (693 µg/kg). Aroma recombination of the key odorants in odorless sunflower oil adequately mimicked the general aroma profiles of sunflower oils. This study provides an important foundation for understanding the relationship between oil processing and aroma molecules of sunflower oils. PRACTICAL APPLICATION: The clear changes observed in the composition and concentrations of key aroma compounds explained the changes in sensory characteristics of sunflower seed oils induced by seed roasting on a molecular basis. Characterizing the key aroma-active composition of sunflower oil and investigating its relationship with oil processing could provide important practical applications for the sunflower oil industry in flavor regulation, quality control, product development, and process optimization.


Subject(s)
Helianthus , Volatile Organic Compounds , Odorants , Oils , Olfactometry , Sunflower Oil
6.
Food Res Int ; 150(Pt A): 110794, 2021 12.
Article in English | MEDLINE | ID: mdl-34865809

ABSTRACT

This was the first study to compare the key aroma-active compounds that contributed to the different aroma profiles between roasted and cold-pressed sesame oils. Aroma compounds were extracted by headspace solid-phase micro-extraction (HS-SPME) and simultaneous distillation extraction (SDE) and were analysed using gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). The numbers of aroma-active compounds with the flavour dilution (FD) factors between 1 and 2048 were 57 and 16 in the roasted and cold-pressed sesame oils, respectively. A total of 28 volatile compounds were identified as aroma-active compounds in sesame oils for the first time. Important aroma compounds (FD ≥ 8) were quantified by the external standard method, and their odour activity values (OAV) were calculated as the ratio of their concentrations to odour thresholds in oil. The numbers of key aroma-active compounds defined by OAVs ≥ 1 were 23 (OAVs = 1-385) and 8 (OAVs = 1-42), respectively, in the roasted and cold-pressed sesame oils. 2-Methoxy-4-vinylphenol (smoked, 1924 µg/kg, OAV = 385), 2-methoxyphenol (smoked, 1488 µg/kg, OAV = 114) and pyrazines (roasted and nutty, 578-22750 µg/kg, OAV = 1-67) were the most important aroma-active compounds in the roasted sesame oil, whereas hexanal (green and fruity, 3094 µg/kg, OAV = 42) was the most important aroma-active compound in the cold-pressed sesame oil, followed by (E,E)-2,4-decadienal (earthy, 4170 µg/kg, OAV = 31), dimethyl sulfone (sulphur-like, 406 µg/kg, OAV = 20) and octanal (green and fruity, 901 µg/kg, OAV = 16). This study provides valuable information for manufacturers to achieve precise flavour control of sesame oil products.


Subject(s)
Odorants , Sesame Oil , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Olfactometry
SELECTION OF CITATIONS
SEARCH DETAIL
...