Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Dis ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38607740

ABSTRACT

Numerous bodily processes deteriorate with age, chief among them being the loss of muscle mass and function. The condition referred to as aging myasthenia gravis impairs older persons' quality of life and is linked to a higher risk of several chronic illnesses. An increasing number of studies conducted in the last several years has demonstrated that moderate exercise can halt this process. Specifically, by promoting autophagy, aerobic exercise helps to postpone the onset of senile myasthenia gravis. In this work, we will explore how aerobic exercise modulates autophagy to prevent muscle aging and examine the most recent findings in this area of study. We discovered that exercise-induced autophagy can effectively balance protein degradation and relieve skeletal muscle atrophy by looking through pertinent literature. Aerobic exercise has a direct impact on autophagy, but it can also delay the onset of senile myasthenia gravis by enhancing blood flow, lowering inflammation, and boosting muscle oxidative capacity. In order to postpone the onset of senile myasthenia gravis, research on the mechanism of action of aerobic exercise in inducing autophagy will be discussed in detail in this study.

2.
Pharm Biol ; 59(1): 532-536, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33915070

ABSTRACT

CONTEXT: Pogostone possesses various pharmacological activities, which makes it widely used in the clinic. Its effect on the activity of cytochrome P450 enzymes (CYP450s) could guide its clinical combination. OBJECTIVE: To investigate the effect of pogostone on the activity of human CYP450s. MATERIALS AND METHODS: The effect of pogostone on the activity of CYP450s was evaluated in human liver microsomes (HLMs) compared with blank HLMs (negative control) and specific inhibitors (positive control). The corresponding parameters were obtained with 0-100 µM pogostone and various concentrations of substrates. RESULTS: Pogostone was found to inhibit the activity of CYP3A4, 2C9, and 2E1 with the IC50 values of 11.41, 12.11, and 14.90 µM, respectively. The inhibition of CYP3A4 by pogostone was revealed to be performed in a non-competitive and time-dependent manner with the Ki value of 5.69 µM and the KI/Kinact value of 5.86/0.056/(µM/min). For the inhibition of CYP2C9 and 2E1, pogostone acted as a competitive inhibitor with the Ki value of 6.46 and 7.67 µM and was not affected by the incubation time. DISCUSSION AND CONCLUSIONS: The inhibitory effect of pogostone on the activity of CYP3A4, 2C9, and 2E1 has been disclosed in this study, implying the potential risk during the co-administration of pogostone and drugs metabolized by these CYP450s. The study design provides a reference for further in vivo investigations to validate the potential interaction.


Subject(s)
Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Cytochrome P-450 CYP2E1 Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Oils, Volatile/pharmacology , Cytochrome P-450 CYP2C9/drug effects , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/administration & dosage , Cytochrome P-450 CYP2E1/drug effects , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1 Inhibitors/administration & dosage , Cytochrome P-450 CYP3A/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Oils, Volatile/administration & dosage , Time Factors
3.
J Cell Mol Med ; 24(1): 276-284, 2020 01.
Article in English | MEDLINE | ID: mdl-31746143

ABSTRACT

Glioma is a common brain malignancy for which new drug development is urgently needed because of radiotherapy and drug resistance. Recent studies have demonstrated that artemisinin (ARS) compounds can display antiglioma activity, but the mechanisms are poorly understood. Using cell lines and mouse models, we investigated the effects of the most soluble ARS analogue artesunate (ART) on glioma cell growth, migration, distant seeding and senescence and elucidated the underlying mechanisms. Artemisinin effectively inhibited glioma cell growth, migration and distant seeding. Further investigation of the mechanisms showed that ART can influence glioma cell metabolism by affecting the nuclear localization of SREBP2 (sterol regulatory element-binding protein 2) and the expression of its target gene HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), the rate-limiting enzyme of the mevalonate (MVA) pathway. Moreover, ART affected the interaction between SREBP2 and P53 and restored the expression of P21 in cells expressing wild-type P53, thus playing a key role in cell senescence induction. In conclusion, our study demonstrated the new therapeutic potential of ART in glioma cells and showed the novel anticancer mechanisms of ARS compounds of regulating MVA metabolism and cell senescence.


Subject(s)
Artesunate/pharmacology , Brain Neoplasms/pathology , Cellular Senescence/drug effects , Glioma/pathology , Metabolic Networks and Pathways/drug effects , Mevalonic Acid/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Models, Biological , Protein Binding/drug effects , Protein Transport/drug effects , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...