Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Appl Opt ; 62(19): 5306-5316, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37707236

ABSTRACT

This paper proposes a Panax notoginseng (P. notoginseng) quantitative analysis based on terahertz time-domain spectroscopy and two-dimensional correlation spectroscopy (2DCOS). By imposing temperature perturbation combined with 2DCOS, the one-dimensional absorbance spectra were transformed into 2DCOS synchronous spectra, which reflected the differences in characteristic information between different P. notoginseng contents more clearly. Then, the feature information of P. notoginseng contents was extracted from the 2DCOS synchronous spectra by a competitive adaptive reweighted sampling (CARS) method and was used to build a quantitative model combined with a support vector regression machine (SVR), called 2DCOS-CARS-SVR. We obtained a more accurate analysis result than the commonly used principal component analysis (PCA)-partial least squares regression (PLSR) and PCA-SVR. The prediction set correlation coefficient and root mean square error reached 0.9915% and 0.8160%, respectively.

2.
Microorganisms ; 11(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37317158

ABSTRACT

American cranberry (Vaccinium macrocarpon) and lowbush/wild blueberry (V. angustifolium) pomace are polyphenol-rich products having potentially beneficial effects in broiler chickens. This study investigated the cecal microbiome of broiler-vaccinated or non-vaccinated birds against coccidiosis. Birds in each of the two groups (vaccinated or non-vaccinated) were fed a basal non-supplemented diet (NC), a basal diet supplemented with bacitracin (BAC), American cranberry (CP), and lowbush blueberry (BP) pomace alone or in combination (CP + BP). At 21 days of age, cecal DNA samples were extracted and analyzed using both whole-metagenome shotgun sequencing and targeted-resistome sequencing approaches. Ceca from vaccinated birds showed a lower abundance of Lactobacillus and a higher abundance of Escherichia coli than non-vaccinated birds (p < 0.05). The highest and lowest abundance of L. crispatus and E. coli, respectively, were observed in birds fed CP, BP, and CP + BP compared to those from NC or BAC treatments (p < 0.05). Coccidiosis vaccination affected the abundance of virulence genes (VGs) related to adherence, flagella, iron utilization, and secretion system. Toxin-related genes were observed in vaccinated birds (p < 0.05) in general, with less prevalence in birds fed CP, BP, and CP + BP than NC and BAC (p < 0.05). More than 75 antimicrobial resistance genes (ARGs) detected by the shotgun metagenomics sequencing were impacted by vaccination. Ceca from birds fed CP, BP, and CP + BP showed the lowest (p < 0.05) abundances of ARGs related to multi-drug efflux pumps, modifying/hydrolyzing enzyme and target-mediated mutation, when compared to ceca from birds fed BAC. Targeted metagenomics showed that resistome from BP treatment was distant to other groups for antimicrobials, such as aminoglycosides (p < 0.05). Significant differences in the richness were observed between the vaccinated and non-vaccinated groups for aminoglycosides, ß-lactams, lincosamides, and trimethoprim resistance genes (p < 0.05). Overall, this study demonstrated that dietary berry pomaces and coccidiosis vaccination significantly impacted cecal microbiota, virulome, resistome, and metabolic pathways in broiler chickens.

3.
Poult Sci ; 102(4): 102544, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36867921

ABSTRACT

This study evaluated effects of feeding low-bush wild blueberry (LBP) and organic American cranberry (CRP) pomaces without or with multienzyme supplement (ENZ) on growth performance, organ weight and plasma metabolites in broiler chickens. Nonenzyme-fed (no-ENZ: n = 1,575) and enzyme-fed (ENZ: n = 1,575) day-old male Cobb500 broilers were placed in floor pens (45 chicks/pen) and allocated to five corn-soybean meal-based diets: a basal diet supplemented with either bacitracin methylene disalicylate (BMD, 55 mg/kg), 0.5 or 1% of CRP or LBP in a 2 × 5 factorial design for 35-day experiment. Body weight (BW), feed intake (FI) and mortality were recorded whereas BW gain (BWG) and feed conversion ratio (FCR) were calculated. Birds were sampled at days 21 and 35 for organ weights and plasma metabolites. There were no interactions between diet and ENZ on any parameter (P > 0.05) and no effect of ENZ on overall (d 0-35) growth performance and organ weights (P > 0.05). Birds fed BMD were heavier (P < 0.05) at d 35 and had better overall FCR than berry-supplemented birds. Birds fed 1% LBP had poor FCR than birds fed 0.5% CRP. Birds fed LBP exhibited heavier liver (P < 0.05) than birds fed BMD or 1% CRP. The highest plasma concentrations of aspartate transaminase (AST), creatine kinase (CK) at d 28 and gamma-glutamyl transferase (GGT) at d 35 were found in ENZ-fed birds (P < 0.05). At d 28, birds fed 0.5% LBP showed higher plasma AST and CK concentrations (P < 0.05). However, CRP feeding resulted in a lower plasma CK level compared with BMD feeding (P < 0.05). The lowest cholesterol level was detected in 1% CRP-fed birds. In conclusion, this study showed no ENZ effects to potentiate berry pomaces on the overall growth performance of broilers (P < 0.05. However, plasma profiles revealed the potential of ENZ to modulate the metabolism of pomace-fed broilers. LBP increased BW during the starter phase, while CRP increased BW during the grower phase.


Subject(s)
Chickens , Zea mays , Animals , Male , Fruit , Organ Size , Glycine max , Flour , Dietary Supplements/analysis , Diet/veterinary , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
4.
J Food Prot ; 86(1): 100008, 2023 01.
Article in English | MEDLINE | ID: mdl-36916583

ABSTRACT

Healthy poultry can be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC), some of which could be multidrug resistant to antimicrobials. These ExPEC strains could contaminate the environment and/or food chain representing thus, food safety and human health risk. However, few studies have shown the virulence of poultry-source antimicrobial-resistant (AMR) ExPEC in humans. This study characterized AMR ExPEC and investigated the virulence potential of some of their isolates in a Caenorhabditis elegans infection model. A total of 46 E. coli isolates from poultry (chicken, n = 29; turkey, n = 12) retail meats and chicken feces (n = 4), or humans (n = 1) were sequenced and identified as ExPEC. Except eight, all remaining 38 ExPEC isolates were resistant to at least one antibiotic and carried corresponding antimicrobial resistance genes (ARGs). About 27 of the 46 ExPEC isolates were multidrug-resistant (≥3 antibiotic classes). Seven ExPEC isolates from chicken or turkey meats were of serotype O25:H4 and sequence type (ST) 131 which clustered with an isolate from a human urinary tract infection (UTI) case having the same serotype and ST. The C. elegans challenge model using eight of studied ExPEC isolates harboring various ARGs and virulence genes (VGs) showed that regardless of their ARG or VG numbers in tested poultry meat and feces, ExPEC significantly reduced the life span of the nematode (P < 0.05) similarly to a human UTI isolate. This study indicated the pathogenic potential of AMR ExPEC from retail poultry meat or feces, but more studies are warranted to establish their virulence in poultry and human. Furthermore, relationships between specific resistance profiles and/or VGs in these E. coli isolates for their pathogenicity deserve investigations.


Subject(s)
Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Animals , Humans , Escherichia coli , Virulence , Poultry , Caenorhabditis elegans , Anti-Bacterial Agents/pharmacology , Meat , Chickens , Virulence Factors/genetics , Phylogeny
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122046, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36334415

ABSTRACT

3-Hydroxybenzaldehyde (3-HBA) was investigated in the range of 0.6-2.8 THz by terahertz time-domain spectroscopy (THz-TDS) and solid-state density functional theory (ss-DFT) with first-principles calculation. Four distinct peaks were found respectively, and among them, the intensity disparity between experiment and simulation spectra at 2.04 THz was recognized as the biggest inconsistency. Considering thermal behavior can be responsible for this, quasi-harmonic approximation (QHA) method was introduced to mimic the unit cell volume expansion. According to vibrational modes analysis, it was ascertained that the biggest vibrational modes discrepancy was also located at 2.04 THz. Molecules in 0% and 4% unit cell expansion exhibit an opposite rotational direction in a-b plane compared with 2% unit cell expansion. Noncovalent intermolecular interactions were investigated with independent gradient model (IGM), and the result indicates that hydrogen bonding is the dominating noncovalent interaction of 3-HBA. While calculating systematic potential energy to the displaced bonds stretching involving hydrogen atoms, it was found the anomalous potential energy variation to the bond stretching provides a possible explanation for the rotation direction divergence, that is, the rotation direction divergence can be related to some hydrogen atoms seeking lower overall potential energy around their equilibrium positions during bond stretching in response to the variational intermolecular van der Waals force. This research combined THz-TDS with the quasi-harmonic approximation method, elucidating the principle of vibrational characteristics in different volumes, which is beneficial to the investigation of the terahertz low-frequency vibration to thermal behavior as a reference in biochemistry and other fields.

6.
J Oncol ; 2022: 6304824, 2022.
Article in English | MEDLINE | ID: mdl-35242188

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common primary malignancy of renal cancer in adults. Ferroptosis is critically associated with the prognosis of ccRCC. However, knowledge of long noncoding RNA- (lncRNA-) related ferroptosis that affects the prognosis of ccRCC is still insufficient. Using the LASSO regression, we created a risk model based on differentially expressed ferroptosis-related lncRNAs (FRLRS) in ccRCC. The analysis of Kaplan-Meier for survival, area under the curve (AUC) for diagnosis, nomogram for predicting overall survival, and gene expression for immune checkpoints were performed based on the screened independent prognostic factors. Nine lncRNAs were found to be associated with ccRCC prognosis. Furthermore, the prognostic AUC of the FRLRS signature was 0.78, demonstrating its usefulness in predicting ccRCC prognosis. The lncRNA risk model outperformed the standard clinical variables in predicting ccRCC prognosis. Finally, The Cancer Genome Atlas revealed that T cell functions, such as cytolytic activity, human leukocyte antigen activity, inflammation regulation, and type II interferon response coordination, are significantly different between two different risk levels of ccRCC. Immune checkpoints were also expressed differently in programmed cell death 1 receptor, inducible T cell costimulator, cytotoxic T-lymphocyte antigen-4, and leukocyte-associated immunoglobulin-like receptor 1. The nine FRLRS signature models may affect the prognosis of ccRCC.

7.
Front Immunol ; 12: 621803, 2021.
Article in English | MEDLINE | ID: mdl-34149685

ABSTRACT

Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.


Subject(s)
Bacterial Infections/immunology , Bird Diseases/immunology , Cecum/microbiology , Chickens/immunology , Coccidia/physiology , Coccidiosis/immunology , Eimeria/physiology , Gastrointestinal Microbiome/immunology , Protozoan Vaccines/immunology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Bacitracin , Blueberry Plants , Immunity, Humoral , Lipid Metabolism , Vaccination , Vaccinium macrocarpon
8.
J Food Prot ; 84(8): 1385-1399, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33770170

ABSTRACT

ABSTRACT: This study was conducted to investigate the effects of in-feed encapsulated cinnamaldehyde (CIN) and citral (CIT) alone or in combination on antimicrobial resistance (AMR) phenotypes and genotypes of Escherichia coli isolates recovered from feces of 6-, 16-, 23-, and 27-day-old broiler chickens. The five dietary treatments including the basal diet (negative control [NC]) and the basal diet supplemented with 55 ppm of bacitracin (BAC), 100 ppm of encapsulated CIN, 100 ppm of encapsulated CIT, or 100 ppm each of encapsulated CIN and encapsulated CIT (CIN+CIT). Antimicrobial susceptibility testing of 240 E. coli isolates revealed that the most common resistance was to ß-lactams, aminoglycosides, sulfonamides, and tetracycline; however, the prevalence of AMR decreased (P < 0.05) as birds aged. The prevalence of resistance to amoxicillin-clavulanic acid, ceftiofur, ceftriaxone, cefoxitin, gentamicin, and sulfonamide was lower (P < 0.05) in isolates from the CIN or CIN+CIT groups than in isolates from the NC or BAC groups. Whole genome sequencing of 227 of the 240 isolates revealed 26 AMR genes and 19 plasmids, but the prevalence of some AMR genes and the number of plasmids were lower (P < 0.05) in E. coli isolated from CIN or CIN+CIT birds than in isolates from NC or BAC birds. The most prevalent resistance genes were tet(A) (108 isolates), aac(3)-VIa (91 isolates), aadA1 (86 isolates), blaCMY-2 (78 isolates), sul1 (77 isolates), aph(3)-Ib (58 isolates), aph(6)-Id (58 isolates), and sul2 (24 isolates). The numbers of most virulence genes carried by isolates increased (P < 0.05) in chickens from 6 to 27 days of age. The prevalence of E. coli O21:H16 isolates was lower (P < 0.05) in CIN and CIN+CIT, and the colibacillosis-associated multilocus sequence type (ST117) was most prevalent in isolates from 23-day-old chickens. A phylogenetic tree of whole genome sequences revealed a close relationship between 25 of the 227 isolates and human or broiler extraintestinal pathogenic E. coli strains. These findings indicate that AMR and virulence genotypes of E. coli could be modulated by providing encapsulated CIN or CIN+CIT feed supplements, but further investigation is needed to determine the mechanisms of the effects of these supplements.


Subject(s)
Escherichia coli Infections , Poultry Diseases , Acrolein/analogs & derivatives , Acyclic Monoterpenes , Aged , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Genotype , Humans , Phenotype , Phylogeny
9.
Poult Sci ; 100(2): 517-526, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518104

ABSTRACT

With the pressure to reduce antibiotics use in poultry production, cost-effective alternative products need to be developed to enhance the bird's immunity. The present study evaluated the efficacy of cranberry fruit by-products to modulate immunity in broiler chickens. Broiler Cobb 500 chicks were fed a control basal diet, basal diet supplemented with bacitracin (BACI, 55 ppm), cranberry pomace at 1% and 2% (CP2), or cranberry pomace ethanolic extract at 150 and 300 ppm (COH300) for 30 d. Blood sera were analyzed at days 21 and 28 of age for Ig levels by ELISA. The innate and adaptive immune-related gene expression levels in the liver and bursa of Fabricius were investigated at 21 d of age by quantitative polymerase chain reaction arrays. At day 21, the highest IgY level was found in the blood serum of the CP2-fed birds. In the liver, 13 of the 22 differentially expressed genes were downregulated across all treatments compared with the control. Expression of genes belonging to innate immunity such as caspase 1 apoptosis-related cysteine peptidase, chemokine receptor 5, interferon gamma, myeloid differentiation primary response gene 88, and Toll-like receptor 3 were significantly downregulated mainly in BACI- and COH300-fed birds. In the bursa, 5 of 9 genes associated with the innate immunity were differentially expressed. The expression of anti-inflammatory IL-10 gene was upregulated in all treatment groups in bursa compared with the control. The expression of transferrin gene was significantly upregulated in livers of birds fed COH300 and in bursa of birds fed BACI, indicating feeding practices and organ-dependant modulation of this gene in broiler. Overall results of this study showed that cranberry product feed supplementation modulated the innate immune and suppressed proinflammatory cytokines in broilers, providing a platform for future investigations to develop berry products in poultry feeding.


Subject(s)
Bursa of Fabricius/immunology , Chickens/immunology , Dietary Supplements , Liver/immunology , Vaccinium macrocarpon , Adaptive Immunity/genetics , Animal Feed/analysis , Animals , Bursa of Fabricius/drug effects , Chickens/blood , Diet/veterinary , Dietary Supplements/analysis , Fruit , Immunity, Innate/genetics , Immunoglobulins/blood , Liver/drug effects , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Vaccinium macrocarpon/chemistry
10.
Front Vet Sci ; 7: 150, 2020.
Article in English | MEDLINE | ID: mdl-33134328

ABSTRACT

This study evaluated the performance, gut microbiota, and blood metabolites in broiler chickens fed cranberry and blueberry products for 30 days. A total of 2,800 male day-old broiler Cobb-500 chicks were randomly distributed between 10 diets: control basal diet; basal diet with bacitracin (BACI); four basal diets with 1 and 2% of cranberry (CP1, CP2) and blueberry (BP1, BP2) pomaces; and four basal diets supplemented with ethanolic extracts of cranberry (COH150, COH300) or blueberry (BOH150, BOH300) pomaces. All groups were composed of seven replicates (40 birds per replicate). Cecal and cloacal samples were collected for bacterial counts and 16S rRNA gene sequencing. Blood samples and spleens were analyzed for blood metabolites and gene expressions, respectively. The supplementation of COH300 and BOH300 significantly increased the body weight (BW) during the starting and growing phases, respectively, while COH150 improved (P < 0.05) the overall cumulated feed efficiency (FE) compared to control. The lowest prevalence (P = 0.01) of necrotic enteritis was observed with CP1 and BP1 compared to BACI and control. Cranberry pomace significantly increased the quinic acid level in blood plasma compared to other treatments. At days 21 and 28 of age, the lowest (P < 0.05) levels of triglyceride and alanine aminotransferase were observed in cranberry pomace and blueberry product-fed birds, respectively suggesting that berry feeding influenced the lipid metabolism and serum enzyme levels. The highest relative abundance of Lactobacillaceae was found in ceca of birds fed CP2 (P < 0.05). In the cloaca, BOH300 significantly (P < 0.005) increased the abundances of Acidobacteria and Lactobacillaceae. Actinobacteria showed a significant (P < 0.05) negative correlation with feed intake (FI) and FE in COH300-treated birds, whereas Proteobacteria positively correlated with the BW but negatively correlated with FI and FE, during the growing phase. In the spleen, cranberry products did not induce the release of any pro-inflammatory cytokines but upregulated the expression of several genes (IL4, IL5, CSF2, and HMBS) involved in adaptive immune responses in broilers. This study demonstrated that feed supplementation with berry products could promote the intestinal health by modulating the dynamics of the gut microbiota while influencing the metabolism in broilers.

13.
Poult Sci ; 99(2): 936-948, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32029170

ABSTRACT

This study investigated the effects of encapsulated cinnamaldehyde (CIN) and citral (CIT) alone or in combination (CIN + CIT) on the growth performance and cecal microbiota of nonvaccinated broilers and broilers vaccinated against coccidiosis. Vaccinated (1,600) and nonvaccinated (1,600) 0-day-old male Cobb500 broilers were randomly allocated to 5 treatments: basal diet (control) and basal diet supplemented with bacitracin (BAC, 55 ppm), CIN (100 ppm), CIT (100 ppm), and CIN (100 ppm) + CIT (100 ppm). In general, body weight (BW) and feed conversion ratio were significantly improved in birds treated with BAC, CIN, CIT, and CIN + CIT (P < 0.05) but were all decreased in vaccinated birds compared with nonvaccinated birds (P < 0.05). Significant interactions (P < 0.05) between vaccination and treatments for average daily gain during the periods of starter (day 0-9) and BW on day 10 were noted. Broilers receiving vaccines (P < 0.01) or feed supplemented with BAC, CIN, CIT, or CIN + CIT (P < 0.01) showed reductions in mortality rate from day 0 to 28. The incidences of minor coccidiosis were higher (P < 0.05) in vaccinated birds than in nonvaccinated birds. Diet supplementation with BAC or tested encapsulated essential oils showed comparable effects on the coccidiosis incidences. Similar to BAC, CIN and its combination with CIT reduced both incidence and severity of necrotic enteritis (P < 0.05). No treatment effects were observed on the cecal microbiota at the phyla level. At the genus level, significant differences between vaccination and treatment groups were observed for 5 (Lactobacillus, Ruminococcus, Faecalibacterium, Enterococcus, and Clostridium) of 40 detected genera (P < 0.05). The genus Lactobacillus was more abundant in broilers fed with CIT, while Clostridium and Enterococcus were less abundant in broilers fed with CIN, CIT, or CIN + CIT in both the vaccinated and nonvaccinated groups. Results from this study suggested that CIN alone or in combination with CIT in feed could improve chicken growth performance to the level comparable with BAC and alter cecal microbiota composition.


Subject(s)
Acrolein/analogs & derivatives , Acyclic Monoterpenes/metabolism , Chickens/physiology , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/drug effects , Protozoan Vaccines/administration & dosage , Acrolein/administration & dosage , Acrolein/metabolism , Acyclic Monoterpenes/administration & dosage , Animal Feed/analysis , Animals , Cecum/microbiology , Chickens/growth & development , Chickens/microbiology , Coccidiosis/parasitology , Coccidiosis/therapy , Coccidiosis/veterinary , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Male , Poultry Diseases/parasitology , Poultry Diseases/therapy , Random Allocation , Vaccination/veterinary
14.
J Food Prot ; 82(11): 1938-1949, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31633426

ABSTRACT

Heidelberg is among the top three Salmonella enterica serovars associated with human foodborne illness in Canada. Traditional culture and antimicrobial susceptibility testing techniques can be time-consuming to identify Salmonella Heidelberg resistant to cephalosporins and fosfomycin. Rapid and accurate detection of such antibiotic-resistant Salmonella Heidelberg isolates is essential to adopt appropriate control measures. In this study, 15 Salmonella Heidelberg strains isolated from feces of Canadian broiler chickens were characterized by whole genome sequencing. Salmonella Heidelberg genomes had an average coverage of greater than 80-fold, an average of 4,761 protein-coding genes, and all belonged to multilocus sequence type ST15. Genome sequences were compared with genomes in the National Center for Biotechnology Information Pathogen Detection database ( www.ncbi.nlm.nih.gov/pathogens/ ), including human outbreak isolates. The Canadian broiler isolates clustered with chicken isolates from the United States and an equine clinical isolate from Ontario, Canada. In agreement with their antimicrobial resistance phenotypes, several chromosomally encoded specific antimicrobial resistance genes including fosA7 and multidrug resistance efflux pump determinants were detected. An AmpC-like ß-lactamase gene, blaCMY-2, linked with a quaternary ammonium compound resistance gene, sugE, on a replicon type IncI1 plasmid was detected in all 15 broiler Salmonella Heidelberg isolates. Of the 205,031 published Salmonella genomes screened in silico, 4,954 (2.4%) contained blaCMY-2, 8,143 (4.0%) contained fosA7, and 919 (0.4%) contained both resistance genes. The combination of both resistance genes (fosA7 and blaCMY-2) was detected in 64% of the Heidelberg genomes and in a small proportion of various other serovars. A PCR method was developed to detect Salmonella Heidelberg in pure culture and chicken feces based on specific primers targeting genes conferring fosfomycin (fosA7) and third-generation cephalosporin (blaCMY-2) resistance as well as the Salmonella-specific invA gene and the universal 16S rRNA genes. The PCR assay was specific and sensitive for blaCMY-2 and fosA7 harboring Salmonella Heidelberg. However, some other Salmonella serovars containing these two resistance genes could also be detected by the developed PCR method.


Subject(s)
Cephalosporins , Drug Resistance, Multiple, Bacterial , Fosfomycin , Genome, Bacterial , Multiplex Polymerase Chain Reaction , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Chickens , Fosfomycin/pharmacology , Genome, Bacterial/genetics , Horses , Humans , Ontario , RNA, Ribosomal, 16S/genetics , Salmonella enterica/drug effects , Salmonella enterica/genetics , Serogroup
15.
ACS Omega ; 4(8): 13218-13230, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31460449

ABSTRACT

The present study investigated the effects of iron, iron chelators, and mutations of tonB or iroN fepA genes on the growth and virulence of Salmonella Typhimurium. Results indicated that organic iron (ferric citrate and ferrous-l-ascorbate) supported better growth of Salmonella compared to inorganic iron. Among tested chelators, 2,2'-bipyridyl at 500 µM showed the highest inhibition of Salmonella growth with 5 µM ferrous sulfate. Deletion of genes (tonB- and iroN- fepA- ) in the iron uptake system attenuated Salmonella invasion of Caco-2 cells and its ability to damage the epithelial monolayer. The expression of all tested host genes in Caco-2 was not affected under the iron-poor condition. However, claudin 3, tight junction protein 1, tumor necrosis factor α (TNF-α), and interleukin-8 (IL-8) were altered under the iron-rich condition depending on individual mutations. In Caenorhabditis elegans, a significant down-regulation of ferritin 1 expression was observed when the nematode was infected by the wild-type (WT) strain.

16.
J Agric Food Chem ; 67(35): 9705-9718, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31393722

ABSTRACT

Antimicrobial resistance is among the most urgent global challenges facing sustainable animal production systems. The use of antibiotics as growth promoters and for infectious disease prevention in intensive animal-farming practices has translated into the selection and spread of antimicrobial resistance genes in an unprecedented fashion. Several multi-resistant bacterial strains have been isolated from food-producing animals, thus constituting an alarming food-safety issue. Many industrial byproducts with potential antimicrobial properties are currently being investigated to identify empirical and affordable solutions/alternatives that can potentially be used in feed for animals. Grape pomace is among such byproducts that gained the attention as a result of its low cost, abundance, and, most importantly, its bioactive and antibacterial properties. This review discusses the recently reported studies with regard to exploring the use of grape pomace (and its extracts) in animal production to control pathogens, along with the promotion of beneficial bacterial species in the gut to ultimately alleviate antibacterial resistance. The review further summarizes realistic expectations connected with grape pomace usage and lists the still-to-be-addressed concerns about its application in animal agriculture.


Subject(s)
Animal Feed/analysis , Anti-Bacterial Agents/administration & dosage , Bacterial Infections/veterinary , Plant Extracts/administration & dosage , Vitis/chemistry , Waste Products/analysis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Infections/drug therapy , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Plant Extracts/chemistry , Plant Extracts/metabolism , Vitis/metabolism
17.
PLoS One ; 14(7): e0219163, 2019.
Article in English | MEDLINE | ID: mdl-31269043

ABSTRACT

Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry (Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute's guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.


Subject(s)
Anti-Infective Agents/pharmacology , Food Microbiology , Plant Extracts/pharmacology , Salmonella enteritidis/drug effects , Salmonella enteritidis/genetics , Vaccinium macrocarpon , Animals , Anthocyanins/isolation & purification , Anthocyanins/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Bacterial Proteins/genetics , Chickens/microbiology , Ethanol , Food, Organic , Fruit/chemistry , Gene Expression Profiling , Genes, Bacterial/drug effects , Genomic Islands/drug effects , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Salmonella Food Poisoning/microbiology , Salmonella Food Poisoning/prevention & control , Salmonella enteritidis/pathogenicity , Vaccinium macrocarpon/chemistry , Virulence/drug effects , Virulence/genetics
18.
J Food Prot ; 82(4): 548-560, 2019 04.
Article in English | MEDLINE | ID: mdl-30901525

ABSTRACT

Enteritidis and Typhimurium are among the top Salmonella enterica serovars implicated in human salmonellosis worldwide. This study examined the individual and combined roles of catecholate-iron and hydroxamate-iron transporters in the survival in meat of Salmonella Enteritidis and Typhimurium. Catecholate-iron-III (Fe3+) and hydroxamate-Fe3+ transporter genes fepA, iroN, and fhuACDB were deleted in isolates of these serovars to generate single, double, and triple mutants. Growth rate in high- and low-iron media was compared among mutants, complements, and their wild-type parents. Susceptibility to 14 antibiotics, the ability to produce and utilize siderophores, and survival on cooked chicken breast were evaluated. In iron-poor liquid media, differences were observed between the growth characteristics of mutant Salmonella Enteritidis and Typhimurium. The double Δ iroNΔ fepA and the triple Δ fhuΔ iroNΔ fepA mutants of Salmonella Enteritidis exhibited prolonged lag phases (λ = 9.72 and 9.53 h) and a slow growth rate (µmax = 0.35 and 0.25 h-1) similar to that of its Δ tonB mutant (λ = 10.12 h and µmax = 0.30 h-1). In Salmonella Typhimurium, double Δ iroNΔ fepA and triple Δ fhuΔ iroNΔ fepA mutations induced a similar growth pattern as its Δ tonB mutant. Double deletions of fepA and iroN reduced the siderophore production and the use of enterobactin as an iron source. In the Δ iroNΔ fepA mutant, but not in Δ fhuΔ iroNΔ fepA, the ferrichrome or deferrioxamine promoted growth for both serovars, confirming the specific role of the FhuACDB system in the uptake and transport of hydroxamate Fe3+. Survival of the mutants was also evaluated in a meat assay, and no difference in survival was observed among the mutants compared with wild type. This study showed differences between serovars in the importance of catecholate-iron and hydroxamate-iron uptake on Salmonella growth in iron-restricted media. Data also confirmed that both Salmonella Enteritidis and Typhimurium are well equipped to survive on cooked chicken meat, offering a rich iron condition.


Subject(s)
Salmonella enterica , Salmonella typhimurium , Animals , Iron , Meat , Salmonella enteritidis , Serogroup , Siderophores
19.
J Environ Qual ; 47(5): 1068-1078, 2018 09.
Article in English | MEDLINE | ID: mdl-30272802

ABSTRACT

Untreated surface waters can be contaminated with a variety of bacteria, including , some of which can be pathogenic for both humans and animals. Therefore, such waters need to be treated before their use in dairy operations to mitigate risks to dairy cow health and milk safety. To understand the molecular ecology of , this study aimed to assess antimicrobial resistance (AMR) in recovered from untreated surface water sources of dairy farms. Untreated surface water samples ( = 240) from 15 dairy farms were collected and processed to isolate . A total of 234 isolates were obtained and further characterized for their serotypes and antimicrobial susceptibility. Of the 234 isolates, 71.4% were pan-susceptible, 23.5% were resistant to one or two antimicrobial classes, and 5.1% were resistant to three or more antimicrobial classes. Whole genome sequence analysis of 11 selected multidrug-resistant isolates revealed AMR genes including and that confer resistance to the critically important extended-spectrum cephalosporins, as well as a variety of plasmids (mainly of the replicon type) and class 1 integrons. Phylogenetic and comparative genome analysis revealed a genetic relationship between some of the sequenced and Shiga toxin-producing O157:H7 (STEC), which warrants further investigation. This study shows that untreated surface water sources contain antimicrobial-resistant which may serve as a reservoir of AMR that could be disseminated through horizontal gene transfer. This is another reason why effective water treatment before usage should be routinely done on dairy farm operations.


Subject(s)
Anti-Infective Agents , Escherichia coli O157 , Animals , Cattle , Farms , Female , Humans , Microbial Sensitivity Tests , Ontario , Phylogeny
20.
Front Immunol ; 9: 1745, 2018.
Article in English | MEDLINE | ID: mdl-30250464

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) infection causes the death of Caenorhabditis elegans, which can be prevented by certain Lactobacillus isolates. The host response of C. elegans to ETEC infection and its regulation by the isolates are, however, largely unclear. This study has revealed that, in agreement with the results of life-span assays, the expression of the genes encoding p38 mitogen-activated protein kinase (MAPK) pathway (nsy-1, sek-1, and pmk-1), insulin/insulin-like growth factor (DAF/IGF) pathway (daf-16), or antimicrobial peptides (lys-7, spp-1, and abf-3) and other defensing molecules (abf-2, clec-85) was upregulated significantly when the wild-type nematode (N2) was subjected to ETEC infection. This upregulation was further enhanced by the pretreatment with Lactobacillus zeae LB1, but not with L. casei CL11. Mutants defective in the cell signaling of C. elegans were either more susceptible (defective in NSY-1, SEK-1, PMK-1, or DAF16) or more resistant (defective in AGE-1, DBL-1, SKN-1, or SOD-3) to ETEC infection compared with the wild-type. Mutants defective in antimicrobial peptides (LYS-7, SPP1, or ABF-3) were also more susceptible. In addition, mutants that are defective in NSY-1, SEK-1, PMK-1, DAF16, ABF-3, LYS-7, or SPP1 showed no response to the protection from L. zeae LB1. The expression of the genes encoding antimicrobial peptides (lys-7, spp-1, and abf-3) and other defensing molecules (abf-2, clec-60, and clec-85) were almost all upregulated in AGE-1- or DBL-1-defective mutant compared with the wild-type, which was further enhanced by the pretreatment of L. zeae LB1. The expression of these genes was, however, mostly downregulated in NSY-1- or DAF-16-defective mutant. These results suggest that L. zeae LB1 regulates C. elegans signaling through the p38 MAPK and DAF/IGF pathways to control the production of antimicrobial peptides and defensing molecules to combat ETEC infection.


Subject(s)
Antibiosis , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Enterotoxigenic Escherichia coli/physiology , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Lactobacillus/physiology , Signal Transduction , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Biomarkers , Disease Resistance , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Gene Expression Profiling , Immunomodulation , Probiotics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...