Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Microbiome ; 12(1): 84, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725076

ABSTRACT

BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.


Subject(s)
Bacteria , Neural Networks, Computer , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods , Genes, Bacterial/genetics , Drug Resistance, Microbial/genetics , Humans , Deep Learning
2.
Water Res ; 253: 121258, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38359594

ABSTRACT

Sewage treatment works have been considered as hotspots for the dissemination of antibiotic resistance genes (ARGs). Anaerobic digestion (AD) has emerged as a promising approach for controlling the spread of ARGs while destroying biomass in sludge. Evaluating the impact of AD on ARG removal relies on the absolute quantification of ARGs. In this study, we quantified the ARG concentrations in both full-scale and lab-scale AD systems using a cellular spike-ins based absolute quantification approach. Results demonstrated that AD effectively removed 68 ± 18 %, 55 ± 12 %, and 57 ± 19 % of total ARGs in semi-continuous AD digesters, with solid retention times of 15, 20, and 25 days, respectively. The removal efficiency of total ARGs increased as the AD process progressed in the batch digesters over 40 days. A significant negative correlation was observed between digestion time and the concentrations of certain ARG types, such as beta-lactam, sulfonamide, and tetracycline. However, certain potential pathogenic antibiotic resistant bacteria (PARB) and multi-resistant high-risk ARGs-carrying populations robustly persisted throughout the AD process, regardless of the operating conditions. This study highlighted the influence of the AD process and its operating parameters on ARG removal, and revealed the broad spectrum and persistence of PARB in AD systems. These findings provided critical insights for the management of microbial hazards.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anaerobiosis , Bacteria/genetics , Sewage/microbiology , Genome, Bacterial
3.
mSystems ; 8(6): e0017823, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032189

ABSTRACT

IMPORTANCE: Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s-1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs' ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.


Subject(s)
Anti-Bacterial Agents , Conjugation, Genetic , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal/genetics , Genomics , Phylogeny
4.
Water Res ; 245: 120641, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37748344

ABSTRACT

Breakthroughs in DNA-based technologies, especially in metagenomic sequencing, have drastically enhanced researchers' ability to explore environmental microbiome and the associated interplays within. However, as new methodologies are being actively developed for improvements in different aspects, metagenomic workflows become diversified and heterogeneous. Through a single-variable control approach, we quantified the microbial profiling variations arising from 6 common technical variables associated with metagenomic workflows for both simple and complex samples. The incurred variations were constantly the lowest in replicates of DNA isolation and DNA sequencing library construction. Different DNA extraction kits often caused the highest variation among all the tested variables. Additionally, sequencing run batch was an important source of variability for targeted platforms. As such, the development of an environmental reference material for complex environmental samples could be beneficial in benchmarking accrued non-biological variability within and between protocols and insuring reliable and reproducible sequencing outputs immediately upstream of bioinformatic analysis. To develop an environment reference material, sequencing of a well-homogenized environmental sample composed of activated sludge was performed using different pre-analytical assays in replications. In parallel, a certified mock community was processed and sequenced. Assays were ranked based on the reconstruction of the theoretical mock community profile. The reproducibility of the best-performing assay and the microbial profile of the reference material were further ascertained. We propose the adoption of our complex environmental reference material, which could reflect the degree of diversity in environmental microbiome studies, to facilitate accurate, reproducible, and comparable environmental metagenomics-based studies.

5.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310875

ABSTRACT

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , Metagenomics/methods
6.
Environ Microbiome ; 18(1): 39, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37122013

ABSTRACT

BACKGROUND: Polycyclic aromatic hydrocarbon (PAH) contamination has been a worldwide environmental issue because of its impact on ecosystems and human health. Biodegradation plays an important role in PAH removal in natural environments. To date, many PAH-degrading strains and degradation genes have been reported. However, a comprehensive PAH-degrading gene database is still lacking, hindering a deep understanding of PAH degraders in the era of big data. Furthermore, the relationships between the PAH-catabolic genotype and phenotype remain unclear. RESULTS: Here, we established a bacterial PAH-degrading gene database and explored PAH biodegradation capability via a genome-function relationship approach. The investigation of functional genes in the experimentally verified PAH degraders indicated that genes encoding hydratase-aldolase could serve as a biomarker for preliminarily identifying potential degraders. Additionally, a genome-centric interpretation of PAH-degrading genes was performed in the public genome database, demonstrating that they were ubiquitous in Proteobacteria and Actinobacteria. Meanwhile, the global phylogenetic distribution was generally consistent with the culture-based evidence. Notably, a few strains affiliated with the genera without any previously known PAH degraders (Hyphomonas, Hoeflea, Henriciella, Saccharomonospora, Sciscionella, Tepidiphilus, and Xenophilus) also bore a complete PAH-catabolic gene cluster, implying their potential of PAH biodegradation. Moreover, a random forest analysis was applied to predict the PAH-degrading trait in the complete genome database, revealing 28 newly predicted PAH degraders, of which nine strains encoded a complete PAH-catabolic pathway. CONCLUSIONS: Our results established a comprehensive PAH-degrading gene database and a genome-function relationship approach, which revealed several potential novel PAH-degrader lineages. Importantly, this genome-centric and function-oriented approach can overcome the bottleneck of conventional cultivation-based biodegradation research and substantially expand our current knowledge on the potential degraders of environmental pollutants.

7.
Water Res ; 235: 119875, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36996751

ABSTRACT

The widely distributed antibiotic resistance genes (ARGs) were unevenly proliferated in various habitats. Great endeavors are needed to resolve the resistome features that can differentiate or connect different habitats. This study retrieved a broad spectrum of resistome profiles from 1723 metagenomes categorized into 13 habitats, encompassing industrial, urban, agricultural, and natural environments, and spanning most continents and oceans. The resistome features (ARG types, subtypes, indicator ARGs, and emerging mobilizable ARGs: mcr and tet(X)) in these habitats were benchmarked via a standardized workflow. We found that wastewater and wastewater treatment works were characterized to be reservoirs of more diverse genotypes of ARGs than any other habitats including human and livestock fecal samples, while fecal samples were with higher ARG abundance. Bacterial taxonomy composition was significantly correlated with resistome composition across most habitats. Moreover, the source-sink connectivities were disentangled by developing the resistome-based microbial attribution prediction model. Environmental surveys with standardized bioinformatic workflow proposed in this study will help comprehensively understand the transfer of ARGs in the environment, thus prioritizing the critical environments with high risks for intervention to tackle the problem of ARGs.


Subject(s)
Genes, Bacterial , Metagenome , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Ecosystem
8.
Water Res ; 235: 119858, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36931186

ABSTRACT

The majority of the current regulatory practices for routine monitoring of beach water quality rely on the culture-based enumeration of faecal indicator bacteria (FIB) to develop criteria for promoting the general public's health. To address the limitations of culture methods and the arguable reliability of FIB in indicating health risks, we developed a Nanopore metagenomic sequencing-based viable cell absolute quantification workflow to rapidly and accurately estimate a broad range of microbes in beach waters by a combination of propidium monoazide (PMA) and cellular spike-ins. Using the simple synthetic bacterial communities mixed with viable and heat-killed cells, we observed near-complete relic DNA removal by PMA with minimal disturbance to the composition of viable cells, demonstrating the feasibility of PMA treatment in profiling viable cells by Nanopore sequencing. On a simple mock community comprised of 15 prokaryotic species, our results showed high accordance between the expected and estimated concentrations, suggesting the accuracy of our method in absolute quantification. We then further assessed the accuracy of our method for counting viable Escherichia coli and Vibrio spp. in beach waters by comparing to culture-based method, which were also in high agreement. Furthermore, we demonstrated that 1 Gb sequences obtained within 2 h would be sufficient to quantify a species having a concentration of ≥ 10 cells/mL in beach waters. Using our viability-resolved quantification workflow to assess the microbial risk of the beach water, we conducted (1) screening-level quantitative microbial risk assessment (QMRA) to investigate human illness risk and site-specific risk patterns that might guide risk management efforts and (2) metagenomics-based resistome risk assessment to evaluate another layer of risk caused by difficult illness treatment due to antimicrobial resistance (AMR). In summary, our metagenomic workflow for the rapid absolute quantification of viable bacteria demonstrated its great potential in paving new avenues toward holistic microbial risk assessment.


Subject(s)
Metagenomics , Nanopore Sequencing , Humans , Microbial Viability , Reproducibility of Results , Propidium , Azides , Risk Assessment , Bacteria , Escherichia coli
9.
Sci Total Environ ; 809: 152190, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34890655

ABSTRACT

Compositional nature of relative abundance data in the current standard microbiome studies limits microbial dynamics interpretations and cross-sample comparisons. Here, we demonstrate the first rapid (1-h sequencing) method coupling Nanopore metagenomic sequencing with cellular spike-in to facilitate the absolute quantification and removal assessment of pathogens and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). Nanopore sequencing-based quantification results for both simple mock community and complex real environmental samples showed a high consistency with those from the widely-used Illumina and culture-based approaches. Implementing such method, we quantified 46 predominant putative pathogenic species, and 361 ARGs in three WWTP sample sets. Though high log removals of dominant pathogens (2.23 logs) and ARGs (1.98 logs) were achieved, complete removal of all pathogens and ARGs were not achieved. Noticeably, Mycobacterium spp., Clostridium_P perfringens, and Borrelia hermsii exhibited low removal, and 13 ARGs even increased in absolute abundance after the treatment. Our proposed approach manifested its profound ability in providing absolute quantitation information guiding wastewater-based epidemiological surveillance and quantitative risk assessment facilitating microbial hazards management.


Subject(s)
Anti-Bacterial Agents , Nanopore Sequencing , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Genes, Bacterial , Wastewater
10.
Water Res ; 209: 117885, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34847392

ABSTRACT

Wastewater treatment plants (WWTPs) are regarded as critical points in disseminating antibiotic resistance genes (ARGs). In particular, the discharging effluents from WWTPs generally bring downstream catchment areas exogenous ARGs and resistant bacteria. However, there lacks a sufficient assessment of the resistome and mobilome in effluents. In this study, a consecutive monthly sampling was conducted over 13 months in three Hong Kong (HK) WWTPs for metagenomic sequencing. Prevalence information of ARGs and mobile genetic elements (MGEs) was compared with counterparts in effluents from cities of North America, South America, Europe, and Asia. Moreover, a publicly accessible platform integrating the exposure ranking scheme, which was based on the global archive of ARG abundance, and a readily implementable online pipeline was developed to benefit communication in academia and government consultancy. Results demonstrated HK WWTPs were featured high ARG removal efficiency of 2.34-2.43 log reduction rate, and effluents were ranked in moderate levels of Level 2 and Level 3 in the exposure prioritizing scheme based on total ARG abundance. Moreover, absolute quantification of temporal variations of effluent resistome disclosed distinct changes over time among varied ARG types which were associated with prevalently used antibiotics, including quinolone and sulfonamide. This reinforces the need for real-time management of WWTP systems. Notably, ARGs of anthropogenic prevalence, high mobility, and potential pathogenicity were found to be present in HK effluents, drawing attention to the necessity for improved risk management. In addition, source tracking of effluent resistome and structural equation model analysis was conducted to explore the disparity in ARG abundance and diversity in different samples. The discovery of this study and the recommendation of a comprehensive exposure assessment will facilitate decision-making in resistome management in WWTPs to reduce the ARG and antibiotic resistant bacteria (ARB) contamination in the receiving environments.

11.
Environ Sci Technol ; 55(22): 15136-15148, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34739205

ABSTRACT

Knowledge of the distribution and dissemination of antibiotic resistance genes (ARGs) is essential for understanding anthropogenic impacts on natural ecosystems. The transportation of ARGs via aquatic environments is significant and has received great attention, but whether there has been anthropogenic ARG pollution to the hadal ocean ecosystem has not been well explored. For investigating ecological health concerns, we profiled the ARG occurrence in sediments of the Mariana Trench (MT) (10 890 m), the deepest region of the ocean. Metagenomic-based ARG profiles showed a sudden increase of abundance and diversity in the surface layer of MT sediments reaching 2.73 × 10-2 copy/cell and 81 subtypes, and a high percentage of ∼63.6% anthropogenic pollution sources was predicted by the Bayesian-modeling classification method. These together suggested that ARG accumulation and anthropogenic impacts have already permeated into the bottom of the deepest corner on the earth. Moreover, six ARG-carrying draft genomes were retrieved using a metagenomic binning strategy, one of which assigned as Streptococcus was identified as a potential bacterial host to contribute to the ARG accumulation in MT, carrying ermF, tetM, tetQ, cfxA2, PBP-2X, and PBP-1A. We propose that the MT ecosystem needs further long-term monitoring for the assessment of human impacts, and our identified three biomarkers (cfxA2, ermF, and mefA) could be used for the rapid monitoring of anthropogenic pollution. Together our findings imply that anthropogenic pollution has penetrated into the deepest region of the ocean and urge for better pollution control to reduce the risk of ARG dissemination to prevent the consistent accumulation and potential threat to the natural environment.


Subject(s)
Anti-Bacterial Agents , Ecosystem , Anti-Bacterial Agents/pharmacology , Bayes Theorem , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans
12.
Microbiome ; 9(1): 199, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615557

ABSTRACT

BACKGROUND: Microbial communities in both natural and applied settings reliably carry out myriads of functions, yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale wastewater treatment plant to answer how complex AS communities evolve in the long term and how the community functions change when there is a disturbance in operational parameters. RESULTS: Here, we show that a microbial community in activated sludge (AS) system fluctuated around a stable average for 3 years but was then abruptly pushed into an alternative stable state by a simple transient disturbance (bleaching). While the taxonomic composition rapidly turned into a new state following the disturbance, the metabolic profile of the community and system performance remained remarkably stable. A total of 920 metagenome-assembled genomes (MAGs), representing approximately 70% of the community in the studied AS ecosystem, were recovered from the 97 monthly AS metagenomes. Comparative genomic analysis revealed an increased ability to aggregate in the cohorts of MAGs with correlated dynamics that are dominant after the bleaching event. Fine-scale analysis of dynamics also revealed cohorts that dominated during different periods and showed successional dynamics on seasonal and longer time scales due to temperature fluctuation and gradual changes in mean residence time in the reactor, respectively. CONCLUSIONS: Our work highlights that communities can assume different stable states under highly similar environmental conditions and that a specific disturbance threshold may lead to a rapid shift in community composition. Video Abstract.


Subject(s)
Microbiota , Sewage , Bacteria/genetics , Bioreactors , Metagenome , Microbiota/genetics
13.
Nat Commun ; 12(1): 4765, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362925

ABSTRACT

Antibiotic resistance genes (ARGs) are widespread among bacteria. However, not all ARGs pose serious threats to public health, highlighting the importance of identifying those that are high-risk. Here, we developed an 'omics-based' framework to evaluate ARG risk considering human-associated-enrichment, gene mobility, and host pathogenicity. Our framework classifies human-associated, mobile ARGs (3.6% of all ARGs) as the highest risk, which we further differentiate as 'current threats' (Rank I; 3%) - already present among pathogens - and 'future threats' (Rank II; 0.6%) - novel resistance emerging from non-pathogens. Our framework identified 73 'current threat' ARG families. Of these, 35 were among the 37 high-risk ARGs proposed by the World Health Organization and other literature; the remaining 38 were significantly enriched in hospital plasmids. By evaluating all pathogen genomes released since framework construction, we confirmed that ARGs that recently transferred into pathogens were significantly enriched in Rank II ('future threats'). Lastly, we applied the framework to gut microbiome genomes from fecal microbiota transplantation donors. We found that although ARGs were widespread (73% of genomes), only 8.9% of genomes contained high-risk ARGs. Our framework provides an easy-to-implement approach to identify current and future antimicrobial resistance threats, with potential clinical applications including reducing risk of microbiome-based interventions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Bacteria/genetics , Databases, Factual , Gastrointestinal Microbiome/drug effects , Genes, Bacterial/drug effects , Genome , Humans , Metagenome , Plasmids
14.
Sci Total Environ ; 801: 149718, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34425441

ABSTRACT

Treatment of manures prior to land application can potentially reduce the abundance of antibiotic resistance genes and thus the risk of contaminating crops or water resources. In this study, raw and composted chicken litter were applied to field plots that were cropped to carrots, lettuce and radishes. Vegetables were washed per normal culinary practice before downstream analysis. The impact of composting on manure microbial composition, persistence of antibiotic resistant bacteria in soil following application, and distribution of antibiotic resistance genes and bacteria on washed vegetables were determined. A subset of samples that were thought likely to reveal the most significant effects were chosen for shotgun sequencing. The absolute abundance of all target genes detected by qPCR decreased after composting except sul1, intI1, incW and erm(F) that remained stable. The shotgun sequencing revealed that some integron integrases were enriched by composting. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. Manure-amended soil showed significantly higher abundances of sul1, str(A), str(B), erm(B), aad(A), intI1 and incW compared to unmanured soil. At harvest, those genes that were detected in soil samples before the application of manure (intI1, sul1, strA and strB) were quantifiable by qPCR on vegetables, with a larger number of gene targets detected on the radishes than in the carrots or lettuce. Shotgun metagenomic sequencing suggested that the increase of antibiotic resistance genes on radishes produced in soil receiving raw manure may be due to changes to soil microbial communities following manure application, rather than transfer to the radishes of enteric bacteria. Overall, under field conditions there was limited evidence for transfer of antibiotic resistance genes from composted or raw manure to vegetables that then persisted through washing.


Subject(s)
Chickens , Vegetables , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial , Genes, Bacterial , Manure , Soil , Soil Microbiology
15.
Environ Microbiol ; 23(9): 5463-5480, 2021 09.
Article in English | MEDLINE | ID: mdl-34288342

ABSTRACT

Pyricularia oryzae is a multi-host pathogen causing cereal disease, including the devastating rice blast. Panicle blast is a serious stage, leading to severe yield loss. Thirty-one isolates (average 4.1%) were collected from the rice panicle lesions at nine locations covering Jiangsu province from 2010 to 2017. These isolates were characterized as Pyricularia sp. jiangsuensis distinct from known Pyricularia species. The representative strain 18-2 can infect rice panicle, root and five kinds of grasses. Intriguingly, strain 18-2 can co-infect rice leaf with P. oryzae Guy11. The whole genome of P. sp. jiangsuensis 18-2 was sequenced. Nine effectors were distributed in translocation or inversion region, which may link to the rapid evolution of effectors. Twenty-one homologues of known blast-effectors were identified in strain 18-2, seven effectors including the homologues of SLP1, BAS2, BAS113, CDIP2/3, MoHEG16 and Avr-Pi54, were upregulated in the sample of inoculated panicle with strain 18-2 at 24 hpi compared with inoculation at 8 hpi. Our results provide evidences that P. sp. jiangsuensis represents an addition to the mycobiota of blast disease. This study advances our understanding of the pathogenicity of P. sp. jiangsuensis to hosts, which sheds new light on the adaptability in the co-evolution of pathogen and host.


Subject(s)
Magnaporthe , Oryza , Edible Grain , Magnaporthe/genetics , Plant Diseases , Poaceae , Virulence
16.
Nat Commun ; 12(1): 2451, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907187

ABSTRACT

Many pathogens infect hosts through specific organs, such as Ustilaginoidea virens, which infects rice panicles. Here, we show that a microbe-associated molecular pattern (MAMP), Ser-Thr-rich Glycosyl-phosphatidyl-inositol-anchored protein (SGP1) from U. virens, induces immune responses in rice leaves but not panicles. SGP1 is widely distributed among fungi and acts as a proteinaceous, thermostable elicitor of BAK1-dependent defense responses in N. benthamiana. Plants specifically recognize a 22 amino acid peptide (SGP1 N terminus peptide 22, SNP22) in its N-terminus that induces cell death, oxidative burst, and defense-related gene expression. Exposure to SNP22 enhances rice immunity signaling and resistance to infection by multiple fungal and bacterial pathogens. Interestingly, while SGP1 can activate immune responses in leaves, SGP1 is required for U. virens infection of rice panicles in vivo, showing it contributes to the virulence of a panicle adapted pathogen.


Subject(s)
Fungal Proteins/immunology , Hypocreales/pathogenicity , Oryza/immunology , Plant Diseases/immunology , Plant Leaves/immunology , Plant Proteins/immunology , Amino Acid Sequence , Cell Death/genetics , Cell Death/immunology , Fungal Proteins/genetics , Gene Expression Regulation , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/immunology , Inflorescence/genetics , Inflorescence/immunology , Inflorescence/microbiology , Oryza/genetics , Oryza/microbiology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Peptides/genetics , Peptides/immunology , Plant Cells/immunology , Plant Cells/pathology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Virulence
17.
ISME J ; 15(10): 2817-2829, 2021 10.
Article in English | MEDLINE | ID: mdl-33820946

ABSTRACT

Antibiotic subsistence in bacteria represents an alternative resistance machinery, while paradoxically, it is also a cure for environmental resistance. Antibiotic-subsisting bacteria can detoxify antibiotic-polluted environments and prevent the development of antibiotic resistance in environments. However, progress toward efficient in situ engineering of antibiotic-subsisting bacteria is hindered by the lack of mechanistic and predictive understanding of the assembly of the functioning microbiome. By top-down manipulation of wastewater microbiomes using sulfadiazine as the single limiting source, we monitored the ecological selection process that forces the wastewater microbiome to perform efficient sulfadiazine subsistence. We found that the community-level assembly selects for the same three families rising to prominence across different initial pools of microbiomes. We further analyzed the assembly patterns using a linear model. Detailed inspections of the sulfonamide metabolic gene clusters in individual genomes of isolates and assembled metagenomes reveal limited transfer potential beyond the boundaries of the Micrococcaceae lineage. Our results open up new possibilities for engineering specialist bacteria for environmental applications.


Subject(s)
Microbiota , Bacteria/genetics , Drug Resistance, Microbial , Humans , Metagenome , Microbiota/genetics , Sulfonamides
18.
Water Res ; 185: 116127, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33086465

ABSTRACT

Antibiotic resistance has become a global public health concern, rendering common infections untreatable. Given the widespread occurrence, increasing attention is being turned toward environmental pathways that potentially contribute to antibiotic resistance gene (ARG) dissemination outside the clinical realm. Studies during the past decade have clearly proved the increased ARG pollution trend along with gradient of anthropogenic interference, mainly through marker-ARG detection by PCR-based approaches. However, accurate source-tracking has been always confounded by various factors in previous studies, such as autochthonous ARG level, spatiotemporal variability and environmental resistome complexity, as well as inherent method limitation. The rapidly developed metagenomics profiles ARG occurrence within the sample-wide genomic context, opening a new avenue for source tracking of environmental ARG pollution. Coupling with machine-learning classification, it has been demonstrated the potential of metagenomic ARG profiles in unambiguously assigning source contribution. Through identifying indicator ARG and recovering ARG-host genomes, metagenomics-based analysis will further increase the resolution and accuracy of source tracking. In this review, challenges and progresses in source-tracking studies on environmental ARG pollution will be discussed, with specific focus on recent metagenomics-guide approaches. We propose an integrative metagenomics-based framework, in which coordinated efforts on experimental design and metagenomic analysis will assist in realizing the ultimate goal of robust source-tracking in environmental ARG pollution.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Metagenome , Metagenomics
19.
Front Microbiol ; 11: 1337, 2020.
Article in English | MEDLINE | ID: mdl-32714294

ABSTRACT

Villosiclava virens is the prevalent causative pathogen of rice false smut, a destructive rice disease. Mating-type genes play a vital role in the evolution of mating systems in fungi. Some fungi have lost MAT1-1-3, one of the mating-type genes, during evolution, whereas others still retain MAT1-1-3. However, how MAT1-1-3 regulates the sexual development of heterothallic V. virens remains unknown. Here, we generated the MAT1-1-3 mutants, which exhibited defects in vegetative growth, stress response, pathogenicity, sclerotia formation and fruiting body maturation. An artificial outcrossing inoculation assay showed that the Δmat1-1-3 mutant was unable to produce sclerotia. Unexpectedly, the Δmat1-1-3 mutant could form immature fruiting bodies without mating on potato sucrose agar medium (PSA) compared with the wild-type strain, most likely by activating the truncated MAT1-2-1 transcription to regulate the sexual development. Moreover, RNA-seq data showed that knockout of MAT1-1-3 results in misregulation of a subset of genes involved in sexual development, MAPK signaling, cell wall integrity, autophagy, epigenetic modification, and transcriptional regulation. Collectively, this study reveals that MAT1-1-3 is required for asexual and sexual development, and pathogenicity of V. virens, thereby provides new insights into the function of mating-type genes in the fungi life cycle and infection process.

20.
Curr Genet ; 66(5): 989-1002, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32572596

ABSTRACT

Rice false smut caused by Villosiclava virens is one of the destructive diseases on panicles of rice. Sexual development of V. virens, controlled by mating-type locus, plays an important role in the prevalence of rice false smut and genetic diversity of the pathogen. However, how the mating-type genes mediate sexual development of the V. virens remains largely unknown. In this study, we characterized the two mating-type genes, MAT1-1-1 and MAT1-1-2, in V. virens. MAT1-1-1 knockout mutant showed defects in hyphal growth, conidia morphogenesis, sexual development, and increase in the tolerance to salt and osmotic stress. Targeted deletion of MAT1-1-2 not only impaired the sclerotia formation and pathogenicity of V. virens, but also reduced the production of conidia. The MAT1-1-2 mutant showed increases in tolerance to salt and hydrogen peroxide stress, but decreases in tolerance to osmotic stress. Yeast two-hybrid assay showed that MAT1-1-1 interacted with MAT1-1-2, indicating that those proteins might form a complex to regulate sexual development. In addition, MAT1-1-1 localized in the nucleus, and MAT1-1-2 localized in the cytoplasm. Collectively, our results demonstrate that MAT1-1-1 and MAT1-1-2 play important roles in the conidiation, stress response, sexual development, and pathogenicity of V. virens, thus providing new insights into the function of mating-type gene.


Subject(s)
Genes, Mating Type, Fungal , Hypocreales/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Sexual Development , Spores, Fungal/physiology , Stress, Physiological , Host-Pathogen Interactions , Plant Diseases/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...