Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 45(4): e13687, 2021 04.
Article in English | MEDLINE | ID: mdl-33665859

ABSTRACT

D. candidum Wall. ex Lindl. (D. candidum) is a traditional Chinese herbal medicine with multiple therapeutic properties. D. candidum was administered to mice with high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and its mechanism of action was elucidated. D. candidum was intragastrically administered to HFD mice for 6 weeks at a dosage of 200 or 400 mg/kg. D. candidum reduced body weight gain and blood glucose levels in HFD mice in a dose-dependent manner, while significantly reducing lipid accumulation in the liver. D. candidum significantly regulated the expression of lipid metabolism- and gluconeogenesis-related genes and inhibited activation of the NLRP3 inflammasome. In summary, D. candidum significantly inhibits fat accumulation, maintains lipid metabolism and glucose homeostasis, and inhibits the inflammatory response in the liver of HFD mice. Our findings suggest that D. candidum may be an effective therapeutic strategy against NAFLD injury. PRACTICAL APPLICATIONS: The occurrence and development of fatty liver is closely related to abnormalities in lipid and glucose metabolism. An HFD-induced NAFLD mouse model was used to study the effects of D. candidum. After treatment with D. candidum, lipid and glucose metabolism in the mice was effectively regulated, which reduced liver damage and fat storage with obvious protective effects on the liver. Our results suggest that D. candidum has potential for further clinical application in the treatment of NAFLD.


Subject(s)
Dendrobium , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology
2.
Biosci Biotechnol Biochem ; 84(8): 1645-1651, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32380907

ABSTRACT

Oxaliplatin (L-OHP) is one of the effective chemotherapeutic drugs for colorectal cancer (CRC). Further investigation into the molecular mechanism of chemoresistance could improve outcomes for patients with colorectal cancer. Recently, microRNAs have been reported as a key in drug resistance of tumors. In this study, we aimed to investigate the effects of miR-153-5p in L-OHP-resistant CRC cells, and its underlying mechanism. Downregulation of miR-153-5p was observed in CRC cells, while upregulation of miR-153-5p enhances the chemosensitivity of CRC/L-OHP cells. The autophagy of CRC/L-OHP cells was markedly increased after exposure to L-OHP but abolished by the upregulation of miR-153-5p. Dual-luciferase reporter assays validated that Bcl-2 was a direct target of miR-153-5p. In conclusion, our data suggested that miR-153-5p was a mediator of cisplatin resistance in colorectal cancer by affecting Bcl-2-mediated autophagy, indicating a new therapeutic target for CRC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Drug Resistance, Neoplasm/genetics , MicroRNAs/genetics , Oxaliplatin/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Antagomirs/genetics , Antagomirs/metabolism , Autophagy/genetics , Base Pairing , Base Sequence , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction
3.
Phytomedicine ; 55: 310-319, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30385134

ABSTRACT

BACKGROUND: Recent studies indicate that vascular complications are closely related to diabetes mellitus; in particular, inflammatory-mediated endothelial dysfunction plays a crucial role in diabetes-induced cardiovascular diseases. Therefore, exploring effective methods to suppress endothelial dysfunction via inhibition of inflammatory responses is imperative. Puerarin (Pu), a flavonoid common in Pueraria, has been widely and successfully used to treat cardiovascular diseases in China for many years. However, information on its protective properties in hyperglycemia-induced vascular complications is insufficient. Hypothesis/Purpose: In this study, we investigate the protective effects of puerarin against high glucose-induced endothelial dysfunction and the underlying mechanism of the flavonoid. METHODS: we investigated the protective effects of Pu against hyperglycemia-induced inter-endothelial junction by permeability and transendothelial electrical resistance (TEER) assay. In addition, changes in the Nlrp3 inflammasome activation via reactive oxygen species (ROS)-dependent oxidative pathway were investigated using western blot, immunofluorescence microscopy analyses and flow cytometry. ROS scavenger and Nlrp3 gene silencing were used to determine the roles of the ROS-Nlrp3 pathway involved in the molecular mechanism of Pu. RESULTS: Our findings demonstrate that puerarin inhibits high glucose-induced Nlrp3 inflammasome formation and activation, as shown by fluorescence confocal microscopy and Western blot. Puerarin decreases Nlrp3 protein, which is a critical factor necessary to form an inflammasome complex. We demonstrate that puerarin exerts anti-oxidation and ROS scavenged effects, similar to apocynin (APO). Interestingly, thioredoxin-interacting protein (TXNIP) protein and TXNIP binding to Nlrp3 markedly decreased with puerarin treatment. Together with these changes, puerarin could decrease high mobility group box 1 (HMGB1) release from mouse vascular endothelial cell (mMVECs). We also demonstrate the decreased expression of the tight junction proteins ZO-1/ZO-2, which are related to endothelial permeability after stimulation by high glucose in endothelial cells. Puerarin could recover the gap junction protein and decrease monolayer cell permeability in endothelial cells. In conclusion, we reveal a new protection mechanism of puerarin that inhibits Nlrp3 inflammasome activation and decreases subsequent caspase-1 activation, triggering the release of HMGB1 by reducing ROS generation. CONCLUSIONS: Our findings indicate that puerarin exhibits immense potential and specific therapeutic value in hyperglycemia-related cardiovascular disease and the development of innovative drugs.


Subject(s)
Endothelial Cells/drug effects , Enzyme Activation/drug effects , Hyperglycemia/metabolism , Inflammasomes/drug effects , Isoflavones/therapeutic use , Oxidation-Reduction/drug effects , Plant Extracts/pharmacology , Animals , China , Diabetes Complications/drug therapy , Isoflavones/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pueraria/chemistry , Rats , Reactive Oxygen Species/metabolism , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...